Mariya V Edeleva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7382348/publications.pdf

Version: 2024-02-01

430754 526166 48 813 18 27 citations g-index h-index papers 49 49 49 587 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Differences and similarities between mono-, bi- or tetrafunctional initiated cationic ring-opening polymerization of 2-oxazolines. Polymer Chemistry, 2022, 13, 861-876.	1.9	3
2	Multi-scale reactive extrusion modelling approaches to design polymer synthesis, modification and mechanical recycling. Reaction Chemistry and Engineering, 2022, 7, 245-263.	1.9	18
3	Setting the Optimal Laser Power for Sustainable Powder Bed Fusion Processing of Elastomeric Polyesters: A Combined Experimental and Theoretical Study. Materials, 2022, 15, 385.	1.3	4
4	Lifting the Sustainability of Modified Pet-Based Multilayer Packaging Material with Enhanced Mechanical Recycling Potential and Processing. Polymers, 2022, 14, 196.	2.0	7
5	Increasing the Sustainability of the Hybrid Mold Technique through Combined Insert Polymeric Material and Additive Manufacturing Method Design. Sustainability, 2022, 14, 877.	1.6	3
6	Costâ€efficient modeling of distributed molar mass and topological variations in graft copolymer synthesis by upgrading the method of moments. AICHE Journal, 2022, 68, .	1.8	23
7	Procedures and Guidelines for Inputting and Output Smoothening of Kinetic Monte Carlo Distributions. Advanced Theory and Simulations, 2022, 5, .	1.3	7
8	Impact of side reactions on molar mass distribution, unsaturation level and branching density in solution free radical polymerization of $\langle i\rangle n \langle i\rangle$ -butyl acrylate under well-defined lab-scale reactor conditions. Polymer Chemistry, 2021, 12, 2095-2114.	1.9	26
9	Jacket temperature regulation allowing well-defined non-adiabatic lab-scale solution free radical polymerization of acrylates. Reaction Chemistry and Engineering, 2021, 6, 1053-1069.	1.9	22
10	Translating Simulated Chain Length and Molar Mass Distributions in Chainâ€Growth Polymerization for Experimental Comparison and Mechanistic Insight. Macromolecular Theory and Simulations, 2021, 30, 2100008.	0.6	19
11	Exploiting (Multicomponent) Semibatch and Jacket Temperature Procedures to Safely Tune Molecular Properties for Solution Free Radical Polymerization of ⟨i⟩n⟨ i⟩â€Butyl Acrylate. Macromolecular Theory and Simulations, 2021, 30, 2100024.	0.6	8
12	Connecting Gas-Phase Computational Chemistry to Condensed Phase Kinetic Modeling: The State-of-the-Art. Polymers, 2021, 13, 3027.	2.0	18
13	Testing the PTT Rheological Model for Extrusion of Virgin and Composite Materials in View of Enhanced Conductivity and Mechanical Recycling Potential. Processes, 2021, 9, 1969.	1.3	0
14	In Silico Screening To Achieve Fast Lab-Scale Nitroxide-Mediated Polymerization of <i>n</i> Butyl Acrylate with Maximal Control over Macromolecular Properties. Industrial & Engineering Chemistry Research, 2021, 60, 16981-16992.	1.8	4
15	Combining Chromatographic, Rheological, and Mechanical Analysis to Study the Manufacturing Potential of Acrylic Blends into Polyacrylic Casts. Materials, 2021, 14, 6939.	1.3	2
16	Photochemistry of tris(2,3,5,6-tetrathiaaryl)methyl radicals in various solutions. Physical Chemistry Chemical Physics, 2020, 22, 1019-1026.	1.3	2
17	NMR and EPR Study of Homolysis of Diastereomeric Alkoxyamines. Molecules, 2020, 25, 5080.	1.7	1
18	Benchmarking Stochastic and Deterministic Kinetic Modeling of Bulk and Solution Radical Polymerization Processes by Including Six Types of Factors Two. Macromolecular Theory and Simulations, 2020, 29, 2000065.	0.6	32

#	Article	IF	CITATIONS
19	Roadmap for Monomer Conversion and Chain Length-Dependent Termination Reactivity Algorithms in Kinetic Monte Carlo Modeling of Bulk Radical Polymerization. Industrial & Engineering Chemistry Research, 2020, 59, 22422-22439.	1.8	21
20	Fluorinated initiators, mediators, and solvents in controlled radical polymerization., 2020,, 69-88.		0
21	Multifrequency Nuclear Magnetic Resonance as an Efficient Tool To Investigate Heterospin Complexes in Solutions. Journal of Physical Chemistry A, 2020, 124, 1343-1352.	1.1	1
22	How intramolecular coordination bonding (ICB) controls the homolysis of the C–ON bond in alkoxyamines. RSC Advances, 2019, 9, 25776-25789.	1.7	6
23	Versatile approach to activation of alkoxyamine homolysis by $1,3$ -dipolar cycloaddition for efficient and safe nitroxide mediated polymerization. Chemical Communications, 2019, 55, 190-193.	2.2	15
24	Smart Control of Nitroxide-Mediated Polymerization Initiators' Reactivity by pH, Complexation with Metals, and Chemical Transformations. Materials, 2019, 12, 688.	1.3	18
25	The effect of the oxophilic Tb(III) cation on C ON bond homolysis in alkoxyamines. Inorganic Chemistry Communication, 2018, 91, 5-7.	1.8	6
26	Radical polymerization of radicalâ€labeled monomers: The triarylmethylâ€based radical monomer as an example. Journal of Polymer Science Part A, 2018, 56, 2656-2664.	2.5	7
27	Coordination-Initiated Nitroxide-Mediated Polymerization (CI-NMP). Australian Journal of Chemistry, 2018, 71, 334.	0.5	17
28	Water-soluble hybrid materials based on {Mo ₆ X ₈ } ⁴⁺ (X = Cl, Br, I) cluster complexes and sodium polystyrene sulfonate. New Journal of Chemistry, 2017, 41, 1670-1676.	1.4	44
29	Zinc(II) Hexafluoroacetylacetonate Complexes of Alkoxyamines: NMR and Kinetic Investigations. First Step for a New Way to Prepare Hybrid Materials ChemistrySelect, 2017, 2, 3584-3593.	0.7	17
30	Dual-initiator alkoxyamines with an N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide moiety for preparation of block co-polymers. RSC Advances, 2017, 7, 4993-5001.	1.7	2
31	How intramolecular hydrogen bonding (IHB) controls the C–ON bond homolysis in alkoxyamines. Organic and Biomolecular Chemistry, 2017, 15, 8425-8439.	1.5	20
32	One-pot synthesis of {Mo6 I8 }4+ -doped polystyrene microspheres via a free radical dispersion copolymerisation reaction. Polymer International, 2017, 66, 1906-1912.	1.6	12
33	Characterization and cytotoxicity studies of thiol-modified polystyrene microbeads doped with [{Mo ₆ X ₈ }(NO ₃) ₆] ²⁻ (X = Cl, Br, I). Polymers for Advanced Technologies, 2016, 27, 922-928.	1.6	35
34	On the synthesis and characterisation of luminescent hybrid particles: Mo ₆ metal cluster complex/SiO ₂ . RSC Advances, 2016, 6, 43367-43375.	1.7	48
35	C–ON bond homolysis of alkoxyamines triggered by paramagnetic copper(<scp>ii</scp>) salts. Inorganic Chemistry Frontiers, 2016, 3, 1464-1472.	3.0	24
36	Trityl-based alkoxyamines as NMP controllers and spin-labels. Polymer Chemistry, 2016, 7, 6490-6499.	1.9	16

#	Article	IF	CITATIONS
37	Octahedral molybdenum cluster complexes with aromatic sulfonate ligands. Dalton Transactions, 2016, 45, 15427-15435.	1.6	62
38	Enhanced spin capturing polymerization: Numerical investigation of mechanism. Journal of Polymer Science Part A, 2015, 53, 2546-2556.	2.5	4
39	One-Pot Synthesis of Gelatinized Maize Starch-Graft-Polyacrylic Acid Films. Advanced Materials Research, 2014, 1040, 331-336.	0.3	1
40	Controlled/living polymerization of methyl methacrylate using new sterically hindered imidazoline nitroxides prepared via intramolecular 1,3-dipolar cycloaddition reaction. Journal of Polymer Science Part A, 2014, 52, 929-943.	2.5	20
41	pH-Sensitive C–ON Bond Homolysis of Alkoxyamines of Imidazoline Series: A Theoretical Study. Journal of Physical Chemistry B, 2014, 118, 5542-5550.	1.2	20
42	Hâ€transfer reaction during decomposition of <i>N</i> à€(2â€methylpropyl)― <i>N</i> à€(1â€diethylphosphonoâ€2,2â€dimethylpropyl)â€ <i>N</i> à€oxyl (SG1)â€based alkoxyamines. Journal o Polymer Science Part A, 2013, 51, 1323-1336.	of2.5	23
43	Chemically Triggered C–ON Bond Homolysis in Alkoxyamines. Part 2: DFT Investigation and Application of the pH Effect on NMP. Macromolecular Rapid Communications, 2012, 33, 152-157.	2.0	34
44	pH-Sensitive C–ON Bond Homolysis of Alkoxyamines of Imidazoline Series with Multiple Ionizable Groups As an Approach for Control of Nitroxide Mediated Polymerization. Journal of Organic Chemistry, 2011, 76, 5558-5573.	1.7	45
45	Chemically Induced Dynamic Nuclear Polarization during the Thermolysis of Alkoxyamines: A New Approach to Detect the Occurrence of H-Transfer Reactions. Polymers, 2010, 2, 364-377.	2.0	9
46	Kinetic study of Hâ€atom transfer in imidazolineâ€, imidazolidineâ€, and pyrrolidineâ€based alkoxyamines: Consequences for nitroxideâ€mediated polymerization. Journal of Polymer Science Part A, 2009, 47, 6579-6595.	2.5	39
47	Kinetics of copolymerization of methyl methacrylate and divinyl sulfide in the presence of initiating systems. Polymer Science - Series B, 2009, 51, 438-443.	0.3	2
48	Hydrogenâ€transfer reaction in nitroxide mediated polymerization of methyl methacrylate: 2,2â€Diphenylâ€3â€phenyliminoâ€2,3â€dihydroindolâ€1â€yloxyl nitroxide (DPAIO) vs. TEMPO. Journal of Polyme Science Part A, 2008, 46, 6828-6842.	er2.5	46