M Prakash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7381939/publications.pdf

Version: 2024-02-01

	623188	552369
1,203	14	26
citations	h-index	g-index
2.6	0.6	0.65
26	26	865
docs citations	times ranked	citing authors
	citations 26	1,203 14 citations h-index 26 26

#	Article	IF	CITATIONS
1	Synchronization of an Inertial Neural Network With Time-Varying Delays and Its Application to Secure Communication. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 195-207.	7.2	262
2	Synchronization of Markovian jumping inertial neural networks and its applications in image encryption. Neural Networks, 2016, 83, 86-93.	3.3	167
3	Adaptive Synchronization of Reaction–Diffusion Neural Networks and Its Application to Secure Communication. IEEE Transactions on Cybernetics, 2020, 50, 911-922.	6.2	146
4	Adaptive Fractional Fuzzy Integral Sliding Mode Control for PMSM Model. IEEE Transactions on Fuzzy Systems, 2019, 27, 1674-1686.	6.5	133
5	Adaptive control for fractional order induced chaotic fuzzy cellular neural networks and its application to image encryption. Information Sciences, 2019, 491, 74-89.	4.0	119
6	Neutral-type of delayed inertial neural networks and their stability analysis using the LMI Approach. Neurocomputing, 2017, 230, 243-250.	3.5	53
7	Fuzzy logic-based integral sliding mode control of multi-area power systems integrated with wind farms. Information Sciences, 2021, 545, 153-169.	4.0	41
8	Digital Controller Design via LMIs for Direct-Driven Surface Mounted PMSG-Based Wind Energy Conversion System. IEEE Transactions on Cybernetics, 2020, 50, 3056-3067.	6.2	38
9	Dynamical Analysis of the Hindmarsh–Rose Neuron With Time Delays. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 1953-1958.	7.2	34
10	Chaotic synchronization of time-delay coupled Hindmarsh–Rose neurons via nonlinear control. Nonlinear Dynamics, 2016, 86, 1249-1262.	2.7	30
11	Design of Observer-Based Event-Triggered Fuzzy ISMC for T–S Fuzzy Model and its Application to PMSG. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 2221-2231.	5.9	24
12	Bifurcation analysis of HIV infection model with antibody and cytotoxic Tâ€lymphocyte immune responses and Beddington–DeAngelis functional response. Mathematical Methods in the Applied Sciences, 2015, 38, 1330-1341.	1.2	21
13	Dynamical analysis of antigen-driven T-cell infection model with multiple delays. Applied Mathematics and Computation, 2019, 354, 266-281.	1.4	17
14	Fuzzy Event-Triggered Control for Back-to-Back Converter Involved PMSG-Based Wind Turbine Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 1409-1420.	6.5	16
15	Impulsive observerâ€based output control for PMSGâ€based Wind Energy Conversion System. IET Control Theory and Applications, 2019, 13, 2056-2064.	1.2	15
16	Stabilisation of eventâ€triggeredâ€based neural network control system and its application to wind power generation systems. IET Control Theory and Applications, 2020, 14, 1321-1333.	1.2	15
17	Hopf Bifurcation and Stability of Periodic Solutions for Delay Differential Model of HIV Infection of CD4 ⁺ T-cells. Abstract and Applied Analysis, 2014, 2014, 1-18.	0.3	13

Fuzzy-logic-based event-triggered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si48.svg"><mml:mrow><mml:mio></mml:mio></mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mrow><mml:mio></mml:mio></mml:mrow><mml:mio><mml:mio><mml:mio></mml:mio></mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml:mio><mml

#	Article	IF	CITATIONS
19	Stability and Hopf bifurcation analysis of novel hyperchaotic system with delayed feedback control. Complexity, 2016, 21, 180-193.	0.9	11
20	Integral sliding mode control for T–S fuzzy descriptor systems. Nonlinear Analysis: Hybrid Systems, 2021, 39, 100953.	2.1	11
21	Bifurcation analysis of macrophages infection model with delayed immune response. Communications in Nonlinear Science and Numerical Simulation, 2016, 35, 1-16.	1.7	7
22	Stability and multi-parametric Hopf bifurcation analyses of viral infection model with time delay. International Journal of Biomathematics, 2015, 08, 1550059.	1.5	6
23	Hopf bifurcation analysis of delayed model of thymic infection with HIV-1. Applied Mathematics and Computation, 2012, 218, 11505-11517.	1.4	5
24	Stability and Hopf bifurcation analysis of immune response delayed HIV type 1 infection model with two target cells. Mathematical Methods in the Applied Sciences, 2015, 38, 3653-3669.	1.2	4
25	Mathematical analysis of a model for thymus infection with discrete and distributed delays. International Journal of Biomathematics, 2014, 07, 1450070.	1.5	1
26	Stability and bifurcation analysis of hepatitis Bâ€type virus infection model. Mathematical Methods in the Applied Sciences, 2021, 44, 6462-6481.	1.2	1