
Keith Goetz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7381910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parker Solar Probe Evidence for the Absence of Whistlers Close to the Sun to Scatter Strahl and to Regulate Heat Flux. Astrophysical Journal Letters, 2022, 924, L33.	3.0	19
2	Improving the Alfvén Wave Solar Atmosphere Model Based on Parker Solar Probe Data. Astrophysical Journal, 2022, 925, 146.	1.6	16
3	Sub-Alfvénic Solar Wind Observed by the Parker Solar Probe: Characterization of Turbulence, Anisotropy, Intermittency, and Switchback. Astrophysical Journal Letters, 2022, 926, L1.	3.0	28
4	Langmuir-Slow Extraordinary Mode Magnetic Signature Observations with Parker Solar Probe. Astrophysical Journal, 2022, 927, 95.	1.6	4
5	First Results From the SCM Searchâ€Coil Magnetometer on Parker Solar Probe. Journal of Geophysical Research: Space Physics, 2022, 127, .	0.8	9
6	Electrostatic Waves with Rapid Frequency Shifts in the Solar Wind from PSP observations. , 2021, , .		0
7	Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREOâ€A. Geophysical Research Letters, 2021, 48, e2020GL091376.	1.5	16
8	Measurement of Magnetic Field Fluctuations in the Parker Solar Probe and Solar Orbiter Missions. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028543.	0.8	17
9	The Encounter of the Parker Solar Probe and a Comet-like Object Near the Sun: Model Predictions and Measurements. Astrophysical Journal, 2021, 910, 7.	1.6	4
10	Evidence of Subproton‣cale Magnetic Holes in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090329.	1.5	18
11	Nonâ€Detection of Lightning During the Second Parker Solar Probe Venus Gravity Assist. Geophysical Research Letters, 2021, 48, e2020GL091751.	1.5	4
12	Evolution of Solar Wind Turbulence from 0.1 to 1 au during the First Parker Solar Probe–Solar Orbiter Radial Alignment. Astrophysical Journal Letters, 2021, 912, L21.	3.0	49
13	Periodicities in an active region correlated with Type III radio bursts observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A6.	2.1	13
14	Wave-particle energy transfer directly observed in an ion cyclotron wave. Astronomy and Astrophysics, 2021, 650, A10.	2.1	12
15	Magnetic increases with central current sheets: observations with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A11.	2.1	8
16	Electron Bernstein waves and narrowband plasma waves near the electron cyclotron frequency in the near-Sun solar wind. Astronomy and Astrophysics, 2021, 650, A97.	2.1	12
17	Energetic particle behavior in near-Sun magnetic field switchbacks from PSP. Astronomy and Astrophysics, 2021, 650, L4.	2.1	12
18	Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A21.	2.1	29

#	Article	IF	CITATIONS
19	Narrowband oblique whistler-mode waves: comparing properties observed by Parker Solar Probe at & & & & & & & & & & & & & & & & & &	2.1	20
20	Switchbacks: statistical properties and deviations from Alfvénicity. Astronomy and Astrophysics, 2021, 650, A3.	2.1	37
21	Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters. Astronomy and Astrophysics, 2021, 650, A12.	2.1	35
22	Prevalence of magnetic reconnection in the near-Sun heliospheric current sheet. Astronomy and Astrophysics, 2021, 650, A13.	2.1	23
23	Measurement of the open magnetic flux in the inner heliosphere down to 0.13 AU. Astronomy and Astrophysics, 2021, 650, A18.	2.1	26
24	The contribution of alpha particles to the solar wind angular momentum flux in the inner heliosphere. Astronomy and Astrophysics, 2021, 650, A17.	2.1	11
25	Solar wind energy flux observations in the inner heliosphere: first results from Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A14.	2.1	12
26	A new view of energetic particles from stream interaction regions observed by Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A24.	2.1	15
27	Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe. Astronomy and Astrophysics, 2021, 650, A5.	2.1	27
28	Collisional Evolution of the Inner Zodiacal Cloud. Planetary Science Journal, 2021, 2, 185.	1.5	18
29	Dust Directionality and an Anomalous Interplanetary Dust Population Detected by the Parker Solar Probe. Planetary Science Journal, 2021, 2, 186.	1.5	14
30	Toward a Physics Based Model of Hypervelocity Dust Impacts. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028415.	0.8	0
31	Kineticâ€ S cale Turbulence in the Venusian Magnetosheath. Geophysical Research Letters, 2021, 48, e2020GL090783.	1.5	11
32	Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter–Parker Solar Probe Quadrature. Astrophysical Journal Letters, 2021, 920, L14.	3.0	25
33	First observations and performance of the RPW instrument on board the Solar Orbiter mission. Astronomy and Astrophysics, 2021, 656, A41.	2.1	9
34	Ambipolar Electric Field and Potential in the Solar Wind Estimated from Electron Velocity Distribution Functions. Astrophysical Journal, 2021, 921, 83.	1.6	14
35	<i>Parker Solar Probe</i> Enters the Magnetically Dominated Solar Corona. Physical Review Letters, 2021, 127, 255101.	2.9	104
36	Plasma Double Layers at the Boundary Between Venus and the Solar Wind. Geophysical Research Letters, 2020, 47, e2020GL090115.	1.5	16

#	Article	IF	CITATIONS
37	Parker Solar Probe Observations of Proton Beams Simultaneous with Ion-scale Waves. Astrophysical Journal, Supplement Series, 2020, 248, 5.	3.0	62
38	Switchbacks in the Solar Magnetic Field: Their Evolution, Their Content, and Their Effects on the Plasma. Astrophysical Journal, Supplement Series, 2020, 246, 68.	3.0	83
39	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	3.0	39
40	In Situ Observations of Interplanetary Dust Variability in the Inner Heliosphere. Astrophysical Journal, 2020, 892, 115.	1.6	22
41	A Merged Search oil and Fluxgate Magnetometer Data Product for Parker Solar Probe FIELDS. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027813.	0.8	31
42	MHD Mode Composition in the Inner Heliosphere from the <i>Parker Solar Probe</i> 's First Perihelion. Astrophysical Journal, Supplement Series, 2020, 246, 71.	3.0	17
43	Proton Temperature Anisotropy Variations in Inner Heliosphere Estimated with the First <i>Parker Solar Probe</i> Observations. Astrophysical Journal, Supplement Series, 2020, 246, 70.	3.0	56
44	Sunward-propagating Whistler Waves Collocated with Localized Magnetic Field Holes in the Solar Wind: Parker Solar Probe Observations at 35.7 R _⊙ Radii. Astrophysical Journal Letters, 2020, 891, L20.	3.0	46
45	Examining Dust Directionality with the Parker Solar Probe FIELDS Instrument. Astrophysical Journal, Supplement Series, 2020, 246, 51.	3.0	26
46	Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 61.	3.0	25
47	Constraining Ion-Scale Heating and Spectral Energy Transfer in Observations of Plasma Turbulence. Physical Review Letters, 2020, 125, 025102.	2.9	29
48	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	3.0	34
49	Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 57.	3.0	45
50	First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe/FIELDS. Astrophysical Journal, Supplement Series, 2020, 246, 44.	3.0	106
51	Observations of Heating along Intermittent Structures in the Inner Heliosphere from PSP Data. Astrophysical Journal, Supplement Series, 2020, 246, 46.	3.0	26
52	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	3.0	50
53	The Evolution and Role of Solar Wind Turbulence in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 53.	3.0	166
54	Measures of Scale-dependent Alfvénicity in the First <i>PSP</i> Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 58.	3.0	51

#	Article	IF	CITATIONS
55	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	3.0	29
56	Solar Wind Streams and Stream Interaction Regions Observed by the Parker Solar Probe with Corresponding Observations at 1 au. Astrophysical Journal, Supplement Series, 2020, 246, 36.	3.0	43
57	Ion-scale Electromagnetic Waves in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 66.	3.0	67
58	Cross Helicity Reversals in Magnetic Switchbacks. Astrophysical Journal, Supplement Series, 2020, 246, 67.	3.0	61
59	The Role of Alfvén Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data. Astrophysical Journal, Supplement Series, 2020, 246, 24.	3.0	66
60	Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from <i>Parker Solar Probe</i> . Astrophysical Journal, Supplement Series, 2020, 246, 48.	3.0	56
61	Statistics and Polarization of Type III Radio Bursts Observed in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 49.	3.0	35
62	Plasma Waves near the Electron Cyclotron Frequency in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 21.	3.0	30
63	Electrons in the Young Solar Wind: First Results from the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 22.	3.0	99
64	Identification of Magnetic Flux Ropes from Parker Solar Probe Observations during the First Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 26.	3.0	57
65	The Near-Sun Dust Environment: Initial Observations from Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 27.	3.0	47
66	The Enhancement of Proton Stochastic Heating in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 30.	3.0	23
67	Magnetic Field Kinks and Folds in the Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 32.	3.0	86
68	Parker Solar Probe In Situ Observations of Magnetic Reconnection Exhausts during Encounter 1. Astrophysical Journal, Supplement Series, 2020, 246, 34.	3.0	65
69	Switchbacks in the Near-Sun Magnetic Field: Long Memory and Impact on the Turbulence Cascade. Astrophysical Journal, Supplement Series, 2020, 246, 39.	3.0	152
70	Predicting the Solar Wind at the Parker Solar Probe Using an Empirically Driven MHD Model. Astrophysical Journal, Supplement Series, 2020, 246, 40.	3.0	14
71	Coronal Electron Temperature Inferred from the Strahl Electrons in the Inner Heliosphere: Parker Solar Probe and Helios Observations. Astrophysical Journal, 2020, 892, 88.	1.6	34
72	Localized Magnetic-field Structures and Their Boundaries in the Near-Sun Solar Wind from Parker Solar Probe Measurements. Astrophysical Journal, 2020, 893, 93.	1.6	44

#	Article	IF	CITATIONS
73	The Solar Orbiter Radio and Plasma Waves (RPW) instrument. Astronomy and Astrophysics, 2020, 642, A12.	2.1	80
74	Small-scale Magnetic Flux Ropes in the First Two Parker Solar Probe Encounters. Astrophysical Journal, 2020, 903, 76.	1.6	22
75	Magnetic Connectivity of the Ecliptic Plane within 0.5 au: Potential Field Source Surface Modeling of the First Parker Solar Probe Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 23.	3.0	100
76	Sharp Alfvénic Impulses in the Near-Sun Solar Wind. Astrophysical Journal, Supplement Series, 2020, 246, 45.	3.0	115
77	Time Domain Structures and Dust in the Solar Vicinity: Parker Solar Probe Observations. Astrophysical Journal, Supplement Series, 2020, 246, 50.	3.0	10
78	Kinetic-scale Spectral Features of Cross Helicity and Residual Energy in the Inner Heliosphere. Astrophysical Journal, Supplement Series, 2020, 246, 52.	3.0	10
79	Exploring Solar Wind Origins and Connecting Plasma Flows from the <i>Parker Solar Probe</i> to 1 au: Nonspherical Source Surface and Alfvénic Fluctuations. Astrophysical Journal, Supplement Series, 2020, 246, 54.	3.0	46
80	Anticorrelation between the Bulk Speed and the Electron Temperature in the Pristine Solar Wind: First Results from the <i>Parker Solar Probe</i> and Comparison with <i>Helios</i> . Astrophysical Journal, Supplement Series, 2020, 246, 62.	3.0	55
81	The Radial Dependence of Proton-scale Magnetic Spectral Break in Slow Solar Wind during <i>PSP</i> Encounter 2. Astrophysical Journal, Supplement Series, 2020, 246, 55.	3.0	36
82	Highly structured slow solar wind emerging from an equatorial coronal hole. Nature, 2019, 576, 237-242.	13.7	401
83	Sign of the Dust Impact-Antenna Coupling Cloud. Journal of Geophysical Research: Space Physics, 2018, 123, 3273-3276.	0.8	3
84	Are STEREO Single Hits Dust Impacts?. Journal of Geophysical Research: Space Physics, 2018, 123, 7211-7219.	0.8	9
85	The Solar Probe Plus Radio Frequency Spectrometer: Measurement requirements, analog design, and digital signal processing. Journal of Geophysical Research: Space Physics, 2017, 122, 2836-2854.	0.8	74
86	Dust impact signals on the wind spacecraft. Journal of Geophysical Research: Space Physics, 2016, 121, 966-991.	0.8	40
87	STEREO database of interplanetary Langmuir electric waveforms. Journal of Geophysical Research: Space Physics, 2016, 121, 1062-1070.	0.8	7
88	The Digital Fields Board for the FIELDS instrument suite on the Solar Probe Plus mission: Analog and digital signal processing. Journal of Geophysical Research: Space Physics, 2016, 121, 5088-5096.	0.8	47
89	The FIELDS Instrument Suite for Solar Probe Plus. Space Science Reviews, 2016, 204, 49-82.	3.7	521
90	Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophysical Research Letters, 2014, 41, 266-272.	1.5	59

#	Article	IF	CITATIONS
91	STEREO and wind observations of intense electron cyclotron harmonic waves at the earths bow shock and inside the magnetosheath. , 2014, , .		0
92	The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission. Space Science Reviews, 2013, 179, 183-220.	3.7	421
93	Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets. Journal of Geophysical Research: Space Physics, 2013, 118, 591-599.	0.8	73
94	Electromagnetic waves and electron anisotropies downstream of supercritical interplanetary shocks. Journal of Geophysical Research: Space Physics, 2013, 118, 5-16.	0.8	67
95	Observations of transverse Z mode and parametric decay in the solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 4766-4775.	0.8	7
96	STEREO and Wind observations of intense cyclotron harmonic waves at the Earth's bow shock and inside the magnetosheath. Journal of Geophysical Research: Space Physics, 2013, 118, 7654-7664.	0.8	36
97	Observations of electromagnetic whistler precursors at supercritical interplanetary shocks. Geophysical Research Letters, 2012, 39, .	1.5	79
98	Do Langmuir wave packets in the solar wind collapse?. Journal of Geophysical Research, 2012, 117, .	3.3	19
99	Explaining polarization reversals in STEREO wave data. Journal of Geophysical Research, 2012, 117, .	3.3	7
100	Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. Journal of Geophysical Research, 2012, 117, .	3.3	87
101	Large amplitude whistlers in the magnetosphere observed with Wind-Waves. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	50
102	Magnetospheric radio tomographic imaging with IMAGE and Wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	2
103	Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler-mode waves. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	61
104	The properties of large amplitude whistler mode waves in the magnetosphere: Propagation and relationship with geomagnetic activity. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	83
105	Large-amplitude transmitter-associated and lightning-associated whistler waves in the Earth's inner plasmasphere at <i>L</i> < 2. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
106	ON THE BRIGHTNESS AND WAITING-TIME DISTRIBUTIONS OF A TYPE III RADIO STORM OBSERVED BY STEREO/WAVES. Astrophysical Journal Letters, 2010, 708, L95-L99.	3.0	19
107	The apparent source size of type III radio bursts: Preliminary results by the STEREOâ^•WAVES instruments. , 2010, , .		3
108	Harmonics of langmuir waves in the Earth's foreshock. Journal of Geophysical Research, 2010, 115, .	3.3	8

#	Article	IF	CITATIONS
109	Observations of largeâ€amplitude, narrowband whistlers at stream interaction regions. Journal of Geophysical Research, 2010, 115, .	3.3	44
110	Measurements of stray antenna capacitance in the STEREO/WAVES instrument: Comparison of the measured voltage spectrum with an antenna electron shot noise model. Radio Science, 2010, 45, n/a-n/a.	0.8	11
111	New periodicity in Jovian decametric radio emission. Geophysical Research Letters, 2010, 37, .	1.5	6
112	Electron trapping and charge transport by large amplitude whistlers. Geophysical Research Letters, 2010, 37, .	1.5	60
113	Largeâ€amplitude electrostatic waves observed at a supercritical interplanetary shock. Journal of Geophysical Research, 2010, 115, .	3.3	77
114	Dust Detection by the Wave Instrument on STEREO: Nanoparticles Picked up by the Solar Wind?. Solar Physics, 2009, 256, 463-474.	1.0	129
115	STEREO SECCHI and S/WAVES Observations ofÂSpacecraft Debris Caused by Micron-Size Interplanetary Dust Impacts. Solar Physics, 2009, 256, 475-488.	1.0	34
116	Multipoint Observations of Solar Type III Radio Bursts from STEREO and Wind. Solar Physics, 2009, 259, 255-276.	1.0	62
117	Various methods of calibration of the STEREO/WAVES antennas. Advances in Space Research, 2009, 43, 355-364.	1.2	24
118	Lowâ€frequency whistler waves and shocklets observed at quasiâ€perpendicular interplanetary shocks. Journal of Geophysical Research, 2009, 114, .	3.3	76
119	Measurements of stray antenna capacitance in the STEREO/WAVES instrument: Comparison of the radio frequency voltage spectrum with models of the galactic nonthermal continuum spectrum. Radio Science, 2009, 44, .	0.8	9
120	Daily variations of auroral kilometric radiation observed by STEREO. Geophysical Research Letters, 2009, 36, .	1.5	8
121	Plasma wave measurements with STEREO S/WAVES: Calibration, potential model, and preliminary results. Journal of Geophysical Research, 2009, 114, .	3.3	40
122	Evidence for wave coupling in type III emissions. Journal of Geophysical Research, 2009, 114, .	3.3	57
123	The Electric Antennas for the STEREO/WAVES Experiment. Space Science Reviews, 2008, 136, 529-547.	3.7	107
124	STEREO/Waves Goniopolarimetry. Space Science Reviews, 2008, 136, 549-563.	3.7	33
125	S/WAVES: The Radio and Plasma Wave Investigation onÂtheÂSTEREO Mission. Space Science Reviews, 2008, 136, 487-528.	3.7	313
126	Discovery of very large amplitude whistlerâ€mode waves in Earth's radiation belts. Geophysical Research Letters, 2008, 35, .	1.5	249

#	Article	IF	CITATIONS
127	The Cassini Radio and Plasma Wave Investigation. Space Science Reviews, 2004, 114, 395-463.	3.7	455
128	Relativistic cyclotron resonance condition as applied to Type II interplanetary radio emission. Journal of Geophysical Research, 2004, 109, .	3.3	2
129	The role of upper hybrid waves in magnetic reconnection. Geophysical Research Letters, 2003, 30, .	1.5	35
130	Continuum emission and broadband electrostatic noise at the low latitude boundary layer: A diagnostic of boundary layer dynamics. Geophysical Research Letters, 2002, 29, 21-1.	1.5	3
131	A test of magnetospheric radio tomographic imaging with IMAGE and WIND. Geophysical Research Letters, 2001, 28, 1131-1134.	1.5	13
132	On the beam speed and wavenumber of intense electron plasma waves near the foreshock edge. Journal of Geophysical Research, 2000, 105, 27353-27367.	3.3	25
133	Langmuir waves in a fluctuating solar wind. Journal of Geophysical Research, 1999, 104, 17069-17078.	3.3	57
134	Transversez-mode waves in the terrestrial electron foreshock. Geophysical Research Letters, 1998, 25, 9-12.	1.5	49
135	Bipolar electrostatic structures in the shock transition region: Evidence of electron phase space holes. Geophysical Research Letters, 1998, 25, 2929-2932.	1.5	258
136	Limits on Decametric Radiation from the Shoemaker‣evy 9 Impacts on Jupiter. Astrophysical Journal, 1997, 484, 432-438.	1.6	0
137	Evidence of currents and unstable particle distributions in an extended region around the lunar plasma wake. Geophysical Research Letters, 1997, 24, 1427-1430.	1.5	38
138	Phase coupling in Langmuir wave packets: Possible evidence of three-wave interactions in the upstream solar wind. Geophysical Research Letters, 1996, 23, 109-112.	1.5	36
139	Observations of plasma waves during a traversal of the Moon's wake. Geophysical Research Letters, 1996, 23, 1267-1270.	1.5	37
140	Early Wind observations of bow shock and foreshock waves. Geophysical Research Letters, 1996, 23, 1243-1246.	1.5	32
141	WAVES: The radio and plasma wave investigation on the wind spacecraft. Space Science Reviews, 1995, 71, 231-263.	3.7	727
142	Evidence for Langmuir wave collapse in the interplanetary plasma. Geophysical Research Letters, 1992, 19, 1303-1306.	1.5	49
143	Low frequency magnetic signals associated with Langmuir waves. Geophysical Research Letters, 1992, 19, 1299-1302.	1.5	35
144	Large-Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of Stereo and Wind Observations. Geophysical Monograph Series, 0, , 41-52.	0.1	4