Lei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7381134/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Abnormal Stranski–Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 1228-1238.	4.0	51
2	Green InGaN Quantum Dots Breaking through Efficiency and Bandwidth Bottlenecks of Micro‣EDs. Laser and Photonics Reviews, 2021, 15, 2000406.	4.4	47
3	1.3  GHz E-O bandwidth GaN-based micro-LED for multi-gigabit visible light communication. Photonics Research, 2021, 9, 792.	3.4	47
4	Encapsulation-Enabled Perovskite–PMMA Films Combining a Micro-LED for High-Speed White-Light Communication. ACS Applied Materials & Interfaces, 2021, 13, 54143-54151.	4.0	43
5	2  Gbps/3  m air–underwater optical wireless communication based on a single-layer quantun micro-LED. Optics Letters, 2020, 45, 2616.	n dot blue 1.91	39
6	InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength. Applied Physics Express, 2014, 7, 025203.	1.1	23
7	Full-duplex high-speed indoor optical wireless communication system based on a micro-LED and VCSEL array. Optics Express, 2021, 29, 3891.	1.7	22
8	Growth Behavior of High-Indium-Composition InGaN Quantum Dots Using Growth Interruption Method. Japanese Journal of Applied Physics, 2011, 50, 065601.	0.8	16
9	Experimental investigation of 16.6 Gbps SDM-WDM visible light communication based on a neural network receiver and tricolor mini-LEDs. Optics Letters, 2021, 46, 2888.	1.7	15
10	Multi-user high-speed QAM-OFDMA visible light communication system using a 75-µm single layer quantum dot micro-LED. Optics Express, 2020, 28, 18332.	1.7	13
11	Multigigabit Visible Light Communication Based on High-Bandwidth InGaN Quantum Dot Green Micro-LED. ACS Photonics, 2022, 9, 2354-2366.	3.2	13
12	8.75  Gbps visible light communication link using an artificial neural network equalizer and a single-pixel blue micro-LED. Optics Letters, 2021, 46, 4670.	1.7	11
13	High-speed Visible Light Communication System Based on a Packaged Single Layer Quantum Dot Blue Micro-LED with 4-Gbps QAM-OFDM. , 2020, , .		5
14	First Demonstration of Multi-user QAM-OFDMA Visible Light Communication System Based on a 75-μm Single Layer Quantum Dot Blue Micro-LED. , 2020, , .		1
15	Impedance Characteristics Study of Packaged InGaN QD-based Micro-LED for Visible Light Communication. , 2020, , .		1
16	An InGaN-based Quantum Dot Blue Micro-LED for High-speed Two-user QAM-NOMA Visible Light Communication. , 2021, , .		0