Yong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380822/publications.pdf

Version: 2024-02-01

233125 185998 2,138 45 52 28 citations h-index g-index papers 52 52 52 3382 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	3Dâ€Branched ZnO/CdS Nanowire Arrays for Solar Water Splitting and the Service Safety Research. Advanced Energy Materials, 2016, 6, 1501459.	10.2	177
2	An innovative design of perovskite solar cells with Al 2 O 3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy, 2016, 22, 223-231.	8.2	157
3	Hydrophobic Polystyrene Passivation Layer for Simultaneously Improved Efficiency and Stability in Perovskite Solar Cells. ACS Applied Materials & Solar Cells.	4.0	107
4	Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7224-7231.	4.0	97
5	Implantable and Biodegradable Micro-Supercapacitor Based on a Superassembled Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode. ACS Applied Materials & Three-Dimensional Network Zn@PPy Hybrid Electrode.	4.0	92
6	Atomic layer deposition assisted superassembly of ultrathin ZnO layer decorated hierarchical Cu foam for stable lithium metal anode. Energy Storage Materials, 2021, 37, 123-134.	9.5	88
7	Cactus-like hierarchical nanorod-nanosheet mixed dimensional photoanode for efficient and stable water splitting. Nano Energy, 2017, 35, 189-198.	8.2	76
8	A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale, 2018, 10, 9360-9368.	2.8	71
9	Interfacial Superâ€Assembled Porous CeO ₂ /C Frameworks Featuring Efficient and Sensitive Decomposing Li ₂ O ₂ for Smart Li–O ₂ Batteries. Advanced Energy Materials, 2019, 9, 1901751.	10.2	71
10	Fiber-shaped asymmetric supercapacitors with ultrahigh energy density for flexible/wearable energy storage. Journal of Materials Chemistry A, 2016, 4, 17704-17710.	5.2	69
11	Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting. Scientific Reports, 2016, 6, 29907.	1.6	68
12	Toxicity of different zinc oxide nanomaterials and dose-dependent onset and development of Parkinson's disease-like symptoms induced by zinc oxide nanorods. Environment International, 2021, 146, 106179.	4.8	67
13	Chemical Vapor Deposition Grown Waferâ€Scale 2D Tantalum Diselenide with Robust Chargeâ€Densityâ€Wave Order. Advanced Materials, 2018, 30, e1804616.	11.1	63
14	Superassembly of Porous Fe _{tet} (NiFe) _{oct} O Frameworks with Stable Octahedron and Multistage Structure for Superior Lithium–Oxygen Batteries. Advanced Energy Materials, 2020, 10, 1904262.	10.2	55
15	3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures. Journal of Colloid and Interface Science, 2017, 493, 42-50.	5.0	53
16	Superâ€Assembled Hierarchical Cellulose Aerogelâ€Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Advanced Functional Materials, 2022, 32, .	7.8	48
17	Zn doped ZIF67-derived porous carbon framework as efficient bifunctional electrocatalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 19782-19791.	3.8	45
18	Interfacial Superassembly of Grape-Like MnO–Ni@C Frameworks for Superior Lithium Storage. ACS Applied Materials & Diterfaces, 2020, 12, 13770-13780.	4.0	45

#	Article	IF	Citations
19	Bioinspired Tribotronic Resistive Switching Memory for Self-Powered Memorizing Mechanical Stimuli. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43822-43829.	4.0	42
20	Metal–Organic Framework–Plant Nanobiohybrids as Living Sensors for On-Site Environmental Pollutant Detection. Environmental Science & Environment	4.6	42
21	A potassium thiocyanate additive for hysteresis elimination in highly efficient perovskite solar cells. Inorganic Chemistry Frontiers, 2019, 6, 434-442.	3.0	39
22	Ag nanoparticle embedded Cu nanoporous hybrid arrays for the selective electrocatalytic reduction of CO ₂ towards ethylene. Inorganic Chemistry Frontiers, 2020, 7, 2097-2106.	3.0	39
23	Facile synthesis of NiCo2S4 nanowire arrays on 3D graphene foam for high-performance electrochemical capacitors application. Journal of Materials Science, 2018, 53, 10292-10301.	1.7	38
24	Wood-Derived Bimetallic and Heteroatomic Hierarchically Porous Carbon Aerogel for Rechargeable Flow Zn–Air Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39458-39469.	4.0	38
25	A facile method for the preparation of three-dimensional CNT sponge and a nanoscale engineering design for high performance fiber-shaped asymmetric supercapacitors. Journal of Materials Chemistry A, 2017, 5, 22559-22567.	5. 2	37
26	Efficient Yttrium(III) Chlorideâ€Treated TiO ₂ Electron Transfer Layers for Performanceâ€Improved and Hysteresisâ€Less Perovskite Solar Cells. ChemSusChem, 2018, 11, 171-177.	3.6	36
27	Biocatalytic metal–organic framework nanomotors for active water decontamination. Chemical Communications, 2020, 56, 14837-14840.	2.2	34
28	Superâ€Assembled Hierarchical CoO Nanosheetsâ€Cu Foam Composites as Multiâ€Level Hosts for Highâ€Performance Lithium Metal Anodes. Small, 2021, 17, e2101301.	5. 2	33
29	Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO ₂ . Inorganic Chemistry Frontiers, 2019, 6, 3363-3380.	3.0	29
30	Ferroelectric polarization-enhanced charge separation in a vanadium-doped ZnO photoelectrochemical system. Inorganic Chemistry Frontiers, 2018, 5, 1533-1539.	3.0	27
31	Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO ₂ insertion at the ZnO/Ni(OH) ₂ interface. Journal of Materials Chemistry A, 2016, 4, 17981-17987.	5.2	25
32	Effect of carrier screening on ZnO-based resistive switching memory devices. Nano Research, 2017, 10, 77-86.	5.8	23
33	Low-cost highly sensitive strain sensors for wearable electronics. Journal of Materials Chemistry C, 2017, 5, 10571-10577.	2.7	21
34	Controlled synthesis of ZnO modified N-doped porous carbon nanofiber membrane for highly efficient removal of heavy metal ions by capacitive deionization. Microporous and Mesoporous Materials, 2022, 338, 111889.	2.2	21
35	SnO2/SnS2 heterostructure@ MXene framework as high performance anodes for hybrid lithium-ion capacitors. Electrochimica Acta, 2022, 409, 139981.	2.6	15
36	Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules. Nano Research, 2022, 15, 2722-2733.	5. 8	14

#	Article	IF	CITATIONS
37	Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomaterials Science, 2022, 10, 1476-1485.	2.6	14
38	3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing. Inorganic Chemistry Frontiers, 2018, 5, 364-369.	3.0	13
39	Deposition of In2O3 nanofibers on polyimide substrates to construct high-performance and flexible trimethylamine sensor. Chinese Chemical Letters, 2020, 31, 2142-2144.	4.8	11
40	Super-Assembled Hierarchical and Stable N-Doped Carbon Nanotube Nanoarrays for Dendrite-Free Lithium Metal Batteries. ACS Applied Energy Materials, 2022, 5, 815-824.	2.5	11
41	Silver modified copper foam electrodes for enhanced reduction of CO ₂ to C ₂₊ products. Materials Advances, 2022, 3, 4964-4972.	2.6	11
42	Superassembled Red Phosphorus Nanorod–Reduced Graphene Oxide Microflowers as Highâ€Performance Lithiumâ€Ion Battery Anodes. Advanced Engineering Materials, 2021, 23, 2001507.	1.6	10
43	A reassembled nanoporous gold leaf electrocatalyst for efficient CO ₂ reduction towards CO. Inorganic Chemistry Frontiers, 2018, 5, 1207-1212.	3.0	9
44	Introducing lead acetate into stoichiometric perovskite lewis acid-base precursor for improved solar cell photovoltaic performance. Journal of Alloys and Compounds, 2018, 767, 829-837.	2.8	8
45	Laser Cladding Induced Spherical Graphitic Phases by Super-Assembly of Graphene-Like Microstructures and the Antifriction Behavior. ACS Central Science, 2021, 7, 318-326.	5.3	8
46	A Novel 3D Hierarchical Plasmonic Functional Cu@Co3O4@Ag Array as Intelligent SERS Sensing Platform with Trace Droplet Rapid Detection Ability for Pesticide Residue Detection on Fruits and Vegetables. Nanomaterials, 2021, 11, 3460.	1.9	8
47	MnO ₂ /MXene–Ti ₃ C ₂ T _x flexible foam for use in lithium ion storage. Materials Advances, 2021, 2, 4772-4780.	2.6	7
48	Defect-Rich Monolayer MoS2 as a Universally Enhanced Substrate for Surface-Enhanced Raman Scattering. Nanomaterials, 2022, 12, 896.	1.9	7
49	Multiâ€stage Ordered Mesoporous Carbonâ€graphene Aerogelâ€Ni 3 S 2 /Co 4 S 3 for Supercapacitor Electrode. Electroanalysis, 0, , .	1.5	6
50	Self-Supported Defect-Rich Au-Based Nanostructures as Robust Bifunctional Catalysts for the Methanol Oxidation Reaction and Oxygen Reduction Reaction in an Alkaline Medium. Nanomaterials, 2021, 11, 2193.	1.9	6
51	A boosting carrier transfer passivation layer for achieving efficient perovskite solar cells. Journal of Materials Chemistry C, 2022, 10, 9794-9801.	2.7	4
52	Surface Charge Transfer Doping of MoS2 Monolayer by Molecules with Aggregation-Induced Emission Effect. Nanomaterials, 2022, 12, 164.	1.9	3