
Patrick C Hermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Populations of Cancer Stem Cells Determine Tumor Growth and Metastatic Activity in Human Pancreatic Cancer. Cell Stem Cell, 2007, 1, 313-323.	5.2	2,534
2	Nodal/Activin Signaling Drives Self-Renewal and Tumorigenicity of Pancreatic Cancer Stem Cells and Provides a Target for Combined Drug Therapy. Cell Stem Cell, 2011, 9, 433-446.	5.2	366
3	Combined Targeted Treatment to Eliminate Tumorigenic Cancer Stem Cells in Human Pancreatic Cancer. Gastroenterology, 2009, 137, 1102-1113.	0.6	312
4	Inhibition of the mammalian target of rapamycin impedes lymphangiogenesis. Kidney International, 2007, 71, 771-777.	2.6	174
5	Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut, 2017, 66, 473-486.	6.1	174
6	Cancer stem cells in solid tumors. Seminars in Cancer Biology, 2010, 20, 77-84.	4.3	170
7	Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 2012, 11, 1282-1290.	1.3	169
8	Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut, 2015, 64, 1921-1935.	6.1	112
9	Vascular Incorporation of Endothelial Colony-Forming Cells Is Essential for Functional Recovery of Murine Ischemic Tissue Following Cell Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, e13-21.	1.1	103
10	Nicotine Promotes Initiation and Progression of KRAS-Induced Pancreatic Cancer via Gata6-Dependent Dedifferentiation of Acinar Cells in Mice. Gastroenterology, 2014, 147, 1119-1133.e4.	0.6	89
11	EMT and Stemness—Key Players in Pancreatic Cancer Stem Cells. Cancers, 2019, 11, 1136.	1.7	88
12	Combination of Injectable Multiple Growth Factor–Releasing Scaffolds and Cell Therapy as an Advanced Modality to Enhance Tissue Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1897-1904.	1.1	85
13	Inhibition of Ataxia Telangiectasia- and Rad3 -Related Function Abrogates the In Vitro and In Vivo Tumorigenicity of Human Colon Cancer Cells Through Depletion of the CD133+ Tumor-Initiating Cell Fraction. Stem Cells, 2011, 29, 418-429.	1.4	84
14	Concentration of Bone Marrow Total Nucleated Cells by a Point-of-Care Device Provides a High Yield and Preserves Their Functional Activity. Cell Transplantation, 2007, 16, 1059-1069.	1.2	77
15	The role of pluripotency factors to drive stemness in gastrointestinal cancer. Stem Cell Research, 2016, 16, 349-357.	0.3	76
16	Detection of Hot-Spot Mutations in Circulating Cell-Free DNA From Patients With Intraductal Papillary Mucinous Neoplasms ofÂthe Pancreas. Gastroenterology, 2016, 151, 267-270.	0.6	76
17	Metastatic cancer stem cells: A new target for anti-cancer therapy?. Cell Cycle, 2008, 7, 188-193.	1.3	75
18	Pancreatic cancer stem cells – update and future perspectives. Molecular Oncology, 2010, 4, 431-442.	2.1	74

PATRICK C HERMANN

#	Article	IF	CITATIONS
19	Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells. Nature Communications, 2020, 11, 5265.	5.8	73
20	Pancreatic cancer stem cells: A state or an entity?. Seminars in Cancer Biology, 2018, 53, 223-231.	4.3	71
21	ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nature Communications, 2020, 11, 2682.	5.8	63
22	Tumor-associated macrophage-secreted 14-3-3ζ signals via AXL to promote pancreatic cancer chemoresistance. Oncogene, 2019, 38, 5469-5485.	2.6	57
23	Modeling plasticity and dysplasia of pancreatic ductal organoids derived from human pluripotent stem cells. Cell Stem Cell, 2021, 28, 1105-1124.e19.	5.2	53
24	Synergistic targeting and resistance to PARP inhibition in DNA damage repair-deficient pancreatic cancer. Gut, 2021, 70, 743-760.	6.1	49
25	Pancreatic cancerâ€derived organoids – a disease modeling tool to predict drug response. United European Gastroenterology Journal, 2020, 8, 594-606.	1.6	48
26	Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplantation, 2008, 16, 1059-69.	1.2	42
27	Adiponectin Pretreatment Counteracts the Detrimental Effect of a Diabetic Environment on Endothelial Progenitors. Diabetes, 2011, 60, 652-661.	0.3	39
28	Pancreatic cancer stem cells – insights and perspectives. Expert Opinion on Biological Therapy, 2009, 9, 1271-1278.	1.4	36
29	Cancer stem cells as new therapeutic target to prevent tumour progression and metastasis. Frontiers in Bioscience - Elite, 2010, E2, 602-613.	0.9	35
30	The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers, 2020, 12, 684.	1.7	34
31	Multimodal Treatment Eliminates Cancer Stem Cells and Leads to Long-Term Survival in Primary Human Pancreatic Cancer Tissue Xenografts. PLoS ONE, 2013, 8, e66371.	1.1	33
32	The CXCL12 Crossroads in Cancer Stem Cells and Their Niche. Cancers, 2021, 13, 469.	1.7	28
33	The ever-changing landscape of pancreatic cancer stem cells. Pancreatology, 2016, 16, 489-496.	0.5	27
34	Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Research, 2016, 17, 367-378.	0.3	27
35	Proteolytic processing of human serum albumin generates EPI-X4, an endogenous antagonist of CXCR4. Journal of Leukocyte Biology, 2016, 99, 863-868.	1.5	24
36	Prostaglandin E Positively Modulates Endothelial Progenitor Cell Homeostasis: An Advanced Treatment Modality for Autologous Cell Therapy. Journal of Vascular Research, 2009, 46, 333-346.	0.6	18

PATRICK C HERMANN

#	Article	IF	CITATIONS
37	The Anthrax Toxin Receptor 1 (ANTXR1) Is Enriched in Pancreatic Cancer Stem Cells Derived from Primary Tumor Cultures. Stem Cells International, 2019, 2019, 1-13.	1.2	16
38	Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut, 2023, 72, 345-359.	6.1	15
39	Telomerase and Pluripotency Factors Jointly Regulate Stemness in Pancreatic Cancer Stem Cells. Cancers, 2021, 13, 3145.	1.7	13
40	IgG4-Related Diseases in the Gastrointestinal Tract: Clinical Presentation, Diagnosis and Treatment Challenges. Digestion, 2019, 100, 1-14.	1.2	12
41	MEK Inhibition Targets Cancer Stem Cells and Impedes Migration of Pancreatic Cancer Cells <i>In Vitro</i> and <i>In Vivo</i> . Stem Cells International, 2019, 2019, 1-11.	1.2	11
42	Chemotherapeutic agents eligible for prior dosing in pancreatic cancer patients requiring hemodialysis: a systematic review. Clinical Nephrology, 2018, 90, 125-141.	0.4	9
43	Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Advanced Science, 2021, 8, 2100626.	5.6	7
44	Metastatic Cancer Stem Cells—Quo Vadis?. Clinical Chemistry, 2013, 59, 1268-1269.	1.5	4
45	The metastatic niche in the liver: tilling the soil for pancreatic cancer progression. Translational Cancer Research, 2017, 6, S217-S220.	0.4	3
46	Nintedanib plus <scp>mFOLFOX6</scp> as secondâ€line treatment of metastatic, chemorefractory colorectal cancer: The randomised, placeboâ€controlled, phase <scp>II TRICCâ€C</scp> study (<scp>AIOâ€KRK</scp> â€0111). International Journal of Cancer, 2021, 148, 1428-1437.	2.3	2
47	Abstract B45: Embryogenesis meets tumorigenesis: Nodal/activin signaling drives self-renewal and invasiveness of pancreatic cancer stem cells. , 2011, , .		2
48	Nodal/Activin Signaling Drives Self-Renewal and Tumorigenicity of Pancreatic Cancer Stem Cells and Provides a Target for Combined Drug Therapy. Cell Stem Cell, 2012, 10, 104.	5.2	0
49	Deletion of NEMO Inhibits EMT and Reduces Metastasis in KPC Mice. Cancers, 2021, 13, 4541.	1.7	Ο
50	Abstract C83: Nicotine triggers initiation and progression of K-Ras-driven pancreatic ductal		0

50 adenocarcinoma., 2013,,. U