
José Alberto Méndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Maleic Anhydride Polylactic Acid Coupling Agent Prepared from Solvent Reaction: Synthesis, Characterization and Composite Performance. Materials, 2022, 15, 1161.	2.9	12
2	Nanocomposites Materials of PLA Reinforced with Nanoclays Using a Masterbatch Technology: A Study of the Mechanical Performance and Its Sustainability. Polymers, 2021, 13, 2133.	4.5	16
3	Manufacturing PLA/PCL Blends by Ultrasonic Molding Technology. Polymers, 2021, 13, 2412.	4.5	8
4	Nanoclay Effect into the Biodegradation and Processability of Poly(lactic acid) Nanocomposites for Food Packaging. Polymers, 2021, 13, 2741.	4.5	16
5	Multicolor PEGDA/LCNF Hydrogel in the Presence of Red Cabbage Anthocyanin Extract. Gels, 2021, 7, 160.	4.5	3
6	Impact Strength and Water Uptake Behavior of Bleached Kraft Softwood-Reinforced PLA Composites as Alternative to PP-Based Materials. Polymers, 2020, 12, 2144.	4.5	12
7	Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers. Polymers, 2020, 12, 1428.	4.5	4
8	Improved Process to Obtain Nanofibrillated Cellulose (CNF) Reinforced Starch Films with Upgraded Mechanical Properties and Barrier Character. Polymers, 2020, 12, 1071.	4.5	13
9	The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. Journal of Polymer Research, 2019, 26, 1.	2.4	35
10	Photo-activated self-healing bio-based polyurethanes. Industrial Crops and Products, 2019, 140, 111613.	5.2	29
11	Determination of Mean Intrinsic Flexural Strength and Coupling Factor of Natural Fiber Reinforcement in Polylactic Acid Biocomposites. Polymers, 2019, 11, 1736.	4.5	24
12	Thermal and Morphology Properties of Cellulose Nanofiber from TEMPO-oxidized Lower part of Empty Fruit Bunches (LEFB). Open Chemistry, 2019, 17, 526-536.	1.9	29
13	OIL PALM-BASED NANOCRYSTALLINE CELLULOSE IN THE EMULSION SYSTEM OF CYCLIC NATURAL RUBBER. Rasayan Journal of Chemistry, 2019, 12, 635-640.	0.4	8
14	The role of lignin on the mechanical performance of polylactic acid and jute composites. International Journal of Biological Macromolecules, 2018, 116, 299-304.	7.5	36
15	Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties. Composites Part B: Engineering, 2018, 134, 169-176.	12.0	57
16	Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiberâ€based food packaging applications. Journal of Applied Polymer Science, 2018, 135, 45501.	2.6	40
17	Compatibility and Wettability of Polypropylene-Cyclic Natural Rubber-NanocrystalCeluloseNanocomposites Containing Methacrylic Acid and Methylacrylateas Coagents. Journal of Physics: Conference Series, 2018, 1120, 012087.	0.4	7
18	Influence of nanocellulose in the emulsion system of resiprene-35 containing Lutrol F127 and Tween80. AIP Conference Proceedings, 2018, , .	0.4	4

#	Article	IF	CITATIONS
19	Towards More Sustainable Material Formulations: A Comparative Assessment of PA11-SGW Flexural Performance versus Oil-Based Composites. Polymers, 2018, 10, 440.	4.5	18
20	Bleached Kraft Eucalyptus Fibers as Reinforcement of Poly(Lactic Acid) for the Development of High-Performance Biocomposites. Polymers, 2018, 10, 699.	4.5	12
21	Impact Strength and Water Uptake Behaviors of Fully Bio-Based PA11-SGW Composites. Polymers, 2018, 10, 717.	4.5	19
22	Bio composite from bleached pine fibers reinforced polylactic acid as a replacement of glass fiber reinforced polypropylene, macro and micro-mechanics of the Young's modulus. Composites Part B: Engineering, 2017, 125, 203-210.	12.0	50
23	Bleached kraft softwood fibers reinforced polylactic acid composites, tensile and flexural strengths. , 2017, , 73-90.		5
24	Cellulose polymer composites (WPC). , 2017, , 115-139.		10
25	Evaluation of Thermal and Thermomechanical Behaviour of Bio-Based Polyamide 11 Based Composites Reinforced with Lignocellulosic Fibres. Polymers, 2017, 9, 522.	4.5	26
26	Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Carbohydrate Polymers, 2016, 152, 361-369.	10.2	65
27	Towards a good interphase between bleached kraft softwood fibers and poly(lactic) acid. Composites Part B: Engineering, 2016, 99, 514-520.	12.0	54
28	Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Flexural characterisation, impact behaviour and water uptake properties. Composites Part B: Engineering, 2016, 97, 176-182.	12.0	24
29	Combined effect of carbon nanotubes and polypyrrole on the electrical properties of cellulose-nanopaper. Cellulose, 2016, 23, 3925-3937.	4.9	19
30	Tensile properties and micromechanical analysis of stone groundwood from softwood reinforced bio-based polyamide11 composites. Composites Science and Technology, 2016, 132, 123-130.	7.8	46
31	Polypropylene reinforced with semi-chemical fibres of Leucaena collinsii : Thermal properties. Composites Part B: Engineering, 2016, 94, 75-81.	12.0	8
32	Semichemical fibres of Leucaena collinsii reinforced polypropylene composites: Young's modulus analysis and fibre diameter effect on the stiffness. Composites Part B: Engineering, 2016, 92, 332-337.	12.0	44
33	Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 2015, 10, .	1.0	9
34	Synthesis and characterization of selfâ€curing hydrophilic bone cements for protein delivery. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 992-1001.	3.4	3
35	Oxidized dextrins as alternative crosslinking agents for polysaccharides: Application to hydrogels of agarose–chitosan. Acta Biomaterialia, 2014, 10, 798-811.	8.3	59
36	Estimation of the interfacial shears strength, orientation factor and mean equivalent intrinsic tensile strength in old newspaper fiber/polypropylene composites. Composites Part B: Engineering, 2013, 50, 232-238.	12.0	66

#	Article	IF	CITATIONS
37	Thermal and dynamic mechanical characterization of acrylic bone cements modified with biodegradable polymers. Journal of Applied Polymer Science, 2013, 128, 3455-3464.	2.6	10
38	Synthesis, characterization and applications of amphiphilic elastomeric polyurethane networks in drug delivery. Polymer Journal, 2013, 45, 331-338.	2.7	26
39	Impact and flexural properties of stoneâ€ground wood pulpâ€reinforced polypropylene composites. Polymer Composites, 2013, 34, 842-848.	4.6	33
40	Thermoplastic Starch-based Composites Reinforced with Rape Fibers: Water Uptake and Thermomechanical Properties. BioResources, 2013, 8, .	1.0	16
41	Bioresorbable and Nonresorbable Polymers for Bone Tissue Engineering Jordi Girones. Current Pharmaceutical Design, 2012, 18, 2536-2557.	1.9	27
42	Recycling Ability of Biodegradable Matrices and Their Cellulose-Reinforced Composites in a Plastic Recycling Stream. Journal of Polymers and the Environment, 2012, 20, 96-103.	5.0	53
43	STONE-GROUND WOOD PULP-REINFORCED POLYPROPYLENE COMPOSITES: WATER UPTAKE AND THERMAL PROPERTIES. BioResources, 2012, 7, .	1.0	11
44	BIO-BASED COMPOSITES FROM STONE GROUNDWOOD APPLIED TO NEW PRODUCT DEVELOPMENT. BioResources, 2012, 7, .	1.0	17
45	Influence of coupling agents in the preparation of polypropylene composites reinforced with recycled fibers. Chemical Engineering Journal, 2011, 166, 1170-1178.	12.7	95
46	Process and recyclability analyses of innovative bio omposite for tray. Packaging Technology and Science, 2010, 23, 177-188.	2.8	4
47	Preparation and properties of biocomposites based on jute fibers and blend of plasticized starch and poly(βâ€hydroxybutyrate). Journal of Applied Polymer Science, 2009, 114, 313-321.	2.6	10
48	Biocomposites based on <i>Alfa</i> fibers and starchâ€based biopolymer. Polymers for Advanced Technologies, 2009, 20, 1068-1075.	3.2	68
49	Behavior of biocomposite materials from flax strands and starch-based biopolymer. Chemical Engineering Science, 2009, 64, 2651-2658.	3.8	61
50	Evaluation of the influence of the addition of biodegradable polymer matrices in the formulation of self-curing polymer systems for biomedical purposes. Acta Biomaterialia, 2009, 5, 2953-2962.	8.3	18
51	Recovered and recycled Kraft fibers as reinforcement of PP composites. Chemical Engineering Journal, 2008, 138, 586-595.	12.7	30
52	Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 3706-3717.	2.6	77
53	Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene. Journal of Applied Polymer Science, 2007, 105, 3588-3596.	2.6	61
54	Chemical modification of jute fibers for the production of green-composites. Journal of Hazardous Materials, 2007, 144, 730-735.	12.4	197

#	Article	IF	CITATIONS
55	Composite materials derived from biodegradable starch polymer and jute strands. Process Biochemistry, 2007, 42, 329-334.	3.7	142
56	Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. Journal of Applied Polymer Science, 2006, 102, 833-840.	2.6	98
57	Injectable self-curing bioactive acrylic-glass composites charged with specific anti-inflammatory/analgesic agent. Biomaterials, 2004, 25, 2381-2392.	11.4	47
58	An Evolutionary Approach to the Estimation of Reactivity Ratios. Macromolecular Theory and Simulations, 2002, 11, 525.	1.4	12
59	Self-curing acrylic formulations containing PMMA/PCL composites: Properties and antibiotic release behavior. Journal of Biomedical Materials Research Part B, 2002, 61, 66-74.	3.1	28
60	New acrylic bone cements conjugated to vitamin E: Curing parameters, properties, and biocompatibility. Journal of Biomedical Materials Research Part B, 2002, 62, 299-307.	3.1	47
61	Acrylic-phosphate glasses composites as self-curing controlled delivery systems of antibiotics. Journal of Materials Science: Materials in Medicine, 2002, 13, 1251-1257.	3.6	14