
Prashant Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tetranuclear Zn/4f coordination clusters as highly efficient catalysts for Friedel–Crafts alkylation. Chemical Communications, 2016, 52, 7866-7869.	4.1	59
2	Efficient Ni ^{II} ₂ Ln ^{III} ₂ Electrocyclization Catalysts for the Synthesis of <i>trans</i> -4,5-Diaminocyclopent-2-enones from 2-Furaldehyde and Primary or Secondary Amines. Inorganic Chemistry, 2016, 55, 6988-6994.	4.0	55
3	3d/4f Coordination Clusters as Cooperative Catalysts for Highly Diastereoselective Michael Addition Reactions. Inorganic Chemistry, 2017, 56, 9563-9573.	4.0	43
4	A Comparative Study of Transferable Aspherical Pseudoatom Databank and Classical Force Fields for Predicting Electrostatic Interactions in Molecular Dimers. Journal of Chemical Theory and Computation, 2014, 10, 1652-1664.	5.3	25
5	Extension of the transferable aspherical pseudoatom data bank for the comparison of molecular electrostatic potentials in structure–activity studies. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, 398-408.	0.1	25
6	TAAM: a reliable and user friendly tool for hydrogen-atom location using routine X-ray diffraction data. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 296-306.	1.1	22
7	Tetranuclear Zn ₂ Ln ₂ coordination clusters as catalysts in the Petasis borono-Mannich multicomponent reaction. RSC Advances, 2016, 6, 79180-79184.	3.6	21
8	Highly Efficient Tetranuclear ZnII2LnIII2 Catalysts for the Friedel–Crafts Alkylation of Indoles and Nitrostyrenes. Catalysts, 2016, 6, 140.	3.5	15
9	A Universal and Straightforward Approach to Include Penetration Effects in Electrostatic Interaction Energy Estimation. ChemPhysChem, 2016, 17, 2455-2460.	2.1	15
10	A tetranuclear Cull2Dylll2 coordination cluster as a Suzuki (C–C) coupling reaction promoter. Dalton Transactions, 2018, 47, 17202-17205.	3.3	14
11	Intermolecular Interactions in Ionic Crystals of Nucleobase Chlorides—Combining Topological Analysis of Electron Densities with Energies of Electrostatic Interactions. Crystals, 2019, 9, 668.	2.2	11
12	Universal Method for Electrostatic Interaction Energies Estimation with Charge Penetration and Easily Attainable Point Charges. Journal of Chemical Theory and Computation, 2018, 14, 6336-6345.	5.3	10
13	Phytochemicals As Uropathognic Escherichia Coli FimH Antagonist: In Vitro And In Silico Approach. Current Molecular Medicine, 2019, 18, 640-653.	1.3	10
14	Interplay of point multipole moments and charge penetration for intermolecular electrostatic interaction energies from the University at Buffalo pseudoatom databank model of electron density. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 598-609.	1.1	9
15	Protonated nucleobases are not fully ionized in their chloride salt crystals and form metastable base pairs further stabilized by the surrounding anions. IUCrJ, 2018, 5, 449-469.	2.2	9
16	Structural and Dynamical Aspects of Electrostatic Interactions by Applying Aspherical Atom Model in HIV-1 Protease. Biophysical Journal, 2016, 110, 380a.	0.5	6
17	Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease. Molecules, 2021, 26, 3872.	3.8	6
18	Catalytic and conductivity studies in two dimensional coordination polymers built with a thiazole based ligand. Polyhedron, 2018, 150, 21-27.	2.2	5

#	Article	IF	CITATIONS
19	Phosphine-free chiral iridium catalysts for asymmetric catalytic hydrogenation of simple ketones. RSC Advances, 2016, 6, 39335-39342.	3.6	4
20	A comparative study of transferable theoretical aspherical pseudoatom data bank and classical force field in predicting the electrostatic interaction in molecular dimers. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, s547-s548.	0.3	0
21	Experimental charge densities of nucleobase chlorides from intermolecular interaction perspective. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1439-C1439.	0.1	Ο
22	New models of electron density for electrostatic interaction energy estimation. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e302-e302.	0.1	0