
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/738044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Baseline SUV _{max} is related to tumor cell proliferation and patient outcome in follicular lymphoma. Haematologica, 2022, 107, 221-230.	1.7	17
2	IL-10 Rescues CLL Survival through Repolarization of Inflammatory Nurse-like Cells. Cancers, 2022, 14, 16.	1.7	11
3	Phased differentiation of γδT and T CD8 tumor-infiltrating lymphocytes revealed by single-cell transcriptomics of human cancers. Oncolmmunology, 2021, 10, 1939518.	2.1	11
4	Lymphoma Heterogeneity Unraveled by Single-Cell Transcriptomics. Frontiers in Immunology, 2021, 12, 597651.	2.2	9
5	Global DNA hypermethylation pattern and unique gene expression signature in liver cancer from patients with Indigenous American ancestry. Oncotarget, 2021, 12, 475-492.	0.8	16
6	3D Model Characterization by 2D and 3D Imaging in t(14;18)-Positive B-NHL: Perspectives for In Vitro Drug Screens in Follicular Lymphoma. Cancers, 2021, 13, 1490.	1.7	9
7	Self-activation of Vγ9Vδ2 T cells by exogenous phosphoantigens involves TCR and butyrophilins. Cellular and Molecular Immunology, 2021, 18, 1861-1870.	4.8	16
8	Cancer cell adaptability: turning ribonucleoprotein granules into targets. Trends in Cancer, 2021, 7, 902-915.	3.8	22
9	PD-1 blockade restores helper activity of tumor-infiltrating, exhausted PD-1hiCD39+ CD4 T cells. JCI Insight, 2021, 6, .	2.3	64
10	Single-Cell RNAseq Profiling of Human Î ³ δT Lymphocytes in Virus-Related Cancers and COVID-19 Disease. Viruses, 2021, 13, 2212.	1.5	12
11	Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nature Cancer, 2021, 2, 1204-1223.	5.7	42
12	Deciphering human γδT cell response in cancer: Lessons from tumorâ€infiltrating γδT cells. Immunological Reviews, 2020, 298, 153-164.	2.8	18
13	Vγ9VÎ′2 T Cells Activation Through Phosphoantigens Can Be Impaired by a RHOB Rerouting in Lung Cancer. Frontiers in Immunology, 2020, 11, 1396.	2.2	3
14	Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib treatment: evolution of leukemic and immune cells at relapse. Biomarker Research, 2020, 8, 72.	2.8	19
15	Insights on TAM Formation from a Boolean Model of Macrophage Polarization Based on In Vitro Studies. Cancers, 2020, 12, 3664.	1.7	12
16	Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets. NAR Genomics and Bioinformatics, 2020, 2, Iqaa025.	1.5	13
17	Dual Relief of T-lymphocyte Proliferation and Effector Function Underlies Response to PD-1 Blockade in Epithelial Malignancies. Cancer Immunology Research, 2020, 8, 869-882.	1.6	16
18	Stress Granules in the Post-transcriptional Regulation of Immune Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 611185.	1.8	7

#	Article	IF	CITATIONS
19	Regulatory Mechanisms of Inhibitory Immune Checkpoint Receptors Expression. Trends in Cell Biology, 2019, 29, 777-790.	3.6	48
20	A Tridimensional Model for NK Cell-Mediated ADCC of Follicular Lymphoma. Frontiers in Immunology, 2019, 10, 1943.	2.2	22
21	Latest Advances in Targeting the Tumor Microenvironment for Tumor Suppression. International Journal of Molecular Sciences, 2019, 20, 4719.	1.8	48
22	Single-cell RNA sequencing unveils the shared and the distinct cytotoxic hallmarks of human TCRVδ1 and TCRVδ2 γδT lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11906-11915.	3.3	152
23	PTMselect: optimization of protein modifications discovery by mass spectrometry. Scientific Reports, 2019, 9, 4181.	1.6	14
24	Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell Reports, 2019, 26, 94-107.e7.	2.9	42
25	Boosting Î ³ δT cell-mediated antibody-dependent cellular cytotoxicity by PD-1 blockade in follicular lymphoma. Oncolmmunology, 2019, 8, 1554175.	2.1	53
26	EBV infection determines the immune hallmarks of plasmablastic lymphoma. OncoImmunology, 2018, 7, e1486950.	2.1	19
27	Profiling Immune Escape in Hodgkin's and Diffuse large B-Cell Lymphomas Using the Transcriptome and Immunostaining. Cancers, 2018, 10, 415.	1.7	19
28	Immunomodulatory Drugs Exert Anti-Leukemia Effects in Acute Myeloid Leukemia by Direct and Immunostimulatory Activities. Frontiers in Immunology, 2018, 9, 977.	2.2	25
29	Assessment of tumor-infiltrating TCRV γ 9V δ 2 γδ lymphocyte abundance by deconvolution of human cancers microarrays. Oncolmmunology, 2017, 6, e1284723.	2.1	134
30	BTN3A1â€antibodies and phosphoantigens: TCRVγ9Vδ2 "see―the difference. European Journal of Immunology, 2017, 47, 954-957.	1.6	2
31	Distinctive features of tumor-infiltrating γδT lymphocytes in human colorectal cancer. Oncolmmunology, 2017, 6, e1347742.	2.1	119
32	Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies. Oncotarget, 2017, 8, 44960-44975.	0.8	82
33	ILâ€33â€expanded human Vγ9Vδ2 TÂcells have anti″ymphoma effect in a mouse tumor model. European Journ of Immunology, 2017, 47, 2137-2141.	al 1.6	17
34	Nurse-like cells promote CLL survival through LFA-3/CD2 interactions. Oncotarget, 2017, 8, 52225-52236.	0.8	28
35	Idelalisib improves CD37 antibody BI 836826 cytotoxicity against chemo-resistant /relapse-initiating CLL cells: a rationale for combination treatment. Blood Cancer Journal, 2016, 6, e496-e496.	2.8	12
36	Poly(phosphorhydrazone) dendrimers: yin and yang of monocyte activation for human NK cell amplification applied to immunotherapy against multiple myeloma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2321-2330.	1.7	42

#	Article	IF	CITATIONS
37	Large-scale microarray profiling reveals four stages of immune escape in non-Hodgkin lymphomas. Oncolmmunology, 2016, 5, e1188246.	2.1	43
38	TCRVγ9 γδT Cell Response to IL-33: A CD4 T Cell–Dependent Mechanism. Journal of Immunology, 2016, 196, 493-502.	0.4	17
39	Cyclic dinucleotides modulate human Tâ€cell response through monocyte cell death. European Journal of Immunology, 2015, 45, 3313-3323.	1.6	8
40	Nurse like cells: chronic lymphocytic leukemia associated macrophages. Leukemia and Lymphoma, 2015, 56, 1570-1572.	0.6	36
41	Several immune escape patterns in non-Hodgkin's lymphomas. Oncolmmunology, 2015, 4, e1026530.	2.1	82
42	Human Monocyte Recognition of Adenosine-Based Cyclic Dinucleotides Unveils the A2a G _{αs} Protein-Coupled Receptor Tonic Inhibition of Mitochondrially Induced Cell Death. Molecular and Cellular Biology, 2015, 35, 479-495.	1.1	18
43	The PPARα pathway in Vγ9Vδ2 T cell anergy. Cellular and Molecular Biology Letters, 2014, 19, 649-58.	2.7	6
44	Curbing false discovery rates in interpretation of genome-wide expression profiles. Journal of Biomedical Informatics, 2014, 47, 58-61.	2.5	10
45	Cell Growth in Aggregates Determines Gene Expression, Proliferation, Survival, Chemoresistance, and Sensitivity to Immune Effectors in Follicular Lymphoma. American Journal of Pathology, 2014, 184, 282-295.	1.9	40
46	Phosphoantigens and butyrophilin 3A1 induce similar intracellular activation signaling in human TCRVγ9+ γδT lymphocytes. Immunology Letters, 2014, 161, 133-137.	1.1	33
47	Recombinant Human IL-15 <i>Trans</i> -Presentation by B Leukemic Cells from Chronic Lymphocytic Leukemia Induces Autologous NK Cell Proliferation Leading to Improved Anti-CD20 Immunotherapy. Journal of Immunology, 2013, 191, 3634-3640.	0.4	28
48	The serineâ€ŧhreonine kinase p90RSK is a new target of enzastaurin in follicular lymphoma cells. British Journal of Pharmacology, 2013, 170, 1374-1383.	2.7	3
49	What lessons can be learned from Î ³ δT cell-based cancer immunotherapy trials?. Cellular and Molecular Immunology, 2013, 10, 35-41.	4.8	164
50	Endogenous IL-8 acts as a CD16 co-activator for natural killer-mediated anti-CD20 B cell depletion in chronic lymphocytic leukemia. Leukemia Research, 2013, 37, 440-446.	0.4	24
51	Recent Advances in Microwave-Based Dielectric Spectroscopy at the Cellular Level for Cancer Investigations. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 2023-2030.	2.9	156
52	Microwave-based biosensor for on-chip biological cell analysis. Analog Integrated Circuits and Signal Processing, 2013, 77, 135-142.	0.9	14
53	Anti-tumor activity of obinutuzumab and rituximab in a follicular lymphoma 3D model. Blood Cancer Journal, 2013, 3, e131-e131.	2.8	46
54	Frequency and route of administration in the treatment of experimental arthritis by phosphorus-based dendrimer. Annals of the Rheumatic Diseases, 2012, 71, A8.2-A8.	0.5	6

#	Article	IF	CITATIONS
55	Innate predisposition to immune escape in follicular lymphoma cells. OncoImmunology, 2012, 1, 555-556.	2.1	12
56	Protein phosphatase-2A activation is a critical step for enzastaurin activity in chronic lymphoid leukemia cells. Leukemia and Lymphoma, 2012, 53, 966-972.	0.6	8
57	Dysfunctional Vγ9VÎ′2 T cells are negative prognosticators and markers of dysregulated mevalonate pathway activity in chronic lymphocytic leukemia cells. Blood, 2012, 120, 3271-3279.	0.6	51
58	Involvement of the Syk–mTOR pathway in follicular lymphoma cell invasion and angiogenesis. Leukemia, 2012, 26, 795-805.	3.3	45
59	Broadband microwave biosensing based on interdigitated capacitor for Lab-on-Chip applications. , 2012, , .		3
60	Accurate Nanoliter Liquid Characterization Up to 40 GHz for Biomedical Applications: Toward Noninvasive Living Cells Monitoring. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 4171-4177.	2.9	81
61	Bioactivity and Prognostic Significance of Growth Differentiation Factor GDF15 Secreted by Bone Marrow Mesenchymal Stem Cells in Multiple Myeloma. Cancer Research, 2012, 72, 1395-1406.	0.4	90
62	The gene expression profile of phosphoantigenâ€specific human γδ T lymphocytes is a blend of αβ Tâ€cell and NKâ€cell signatures. European Journal of Immunology, 2012, 42, 228-240.	1.6	45
63	Microwave signatures of alive B-lymphoma cells suspensions. , 2011, , .		16
64	Microfluidic on-chip for biomedical applications. , 2011, , .		6
65	Differentiation, phenotype, and function of interleukin-17–producing human Vγ9VÎ′2 T cells. Blood, 2011, 118, 129-138.	0.6	262
66	Genomic and phenotypic characterization of nurse-like cells that promote drug resistance in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2011, 52, 1404-1406.	0.6	42
67	Anti-Inflammatory Properties of Dendrimers <i>per se</i> . Scientific World Journal, The, 2011, 11, 1367-1382.	0.8	36
68	<scp>UVA</scp> â€activated synthesis of metalloproteinases 1, 3 and 9 is prevented by a broadâ€spectrum sunscreen. Photodermatology Photoimmunology and Photomedicine, 2011, 27, 318-324.	0.7	16
69	Influence of stress on extracellular matrix and integrin biology. Oncogene, 2011, 30, 2697-2706.	2.6	87
70	How tumors might withstand γδT-cell attack. Cellular and Molecular Life Sciences, 2011, 68, 2433-2442.	2.4	19
71	Pre-eminence and persistence of immature natural killer cells in acute myeloid leukemia patients in first complete remission. American Journal of Hematology, 2011, 86, 209-213.	2.0	17
72	Hammada scoparia flavonoids and rutin kill adherent and chemoresistant leukemic cells. Leukemia Research, 2011, 35, 1093-1101.	0.4	48

#	Article	IF	CITATIONS
73	A Phosphorus-Based Dendrimer Targets Inflammation and Osteoclastogenesis in Experimental Arthritis. Science Translational Medicine, 2011, 3, 81ra35.	5.8	207
74	Direct Effect of Rituximab in B-Cell–Derived Lymphoid Neoplasias: Mechanism, Regulation, and Perspectives. Molecular Cancer Research, 2011, 9, 1435-1442.	1.5	40
75	Cancer Stem Cells of Differentiated B-Cell Malignancies: Models and Consequences. Cancers, 2011, 3, 1566-1579.	1.7	8
76	Human Solid Tumors Contain High Endothelial Venules: Association with T- and B-Lymphocyte Infiltration and Favorable Prognosis in Breast Cancer. Cancer Research, 2011, 71, 5678-5687.	0.4	386
77	Stimulated γδT Cells Increase the In Vivo Efficacy of Trastuzumab in HER-2+ Breast Cancer. Journal of Immunology, 2011, 187, 1031-1038.	0.4	99
78	Oncologic trogocytosis with Hospicells induces the expression of N-cadherin by breast cancer cells. International Journal of Oncology, 2010, 37, 1453-61.	1.4	11
79	lgA-mediated human autoimmune hemolytic anemia as a result of hemagglutination in the spleen, but independent of complement activation and FcαRI. Blood, 2010, 116, 4141-4147.	0.6	40
80	Rituximab inhibits B-cell receptor signaling. Blood, 2010, 115, 985-994.	0.6	70
81	PGE2 inhibits natural killer and γδT cell cytotoxicity triggered by NKR and TCR through a cAMP-mediated PKA type I-dependent signaling. Biochemical Pharmacology, 2010, 80, 838-845.	2.0	108
82	Lenalidomide down regulates the production of interferon-Î ³ and the expression of inhibitory cytotoxic receptors of human Natural Killer cells. Cellular Immunology, 2010, 264, 163-170.	1.4	24
83	Hospicells derived from ovarian cancer stroma inhibit Tâ€cell immune responses. International Journal of Cancer, 2010, 126, 2143-2152.	2.3	25
84	Sorting protein lists with nwCompare: A simple and fast algorithm for <i>n</i> â€way comparison of proteomic data files. Proteomics, 2010, 10, 1091-1094.	1.3	13
85	B-chronic lymphocytic leukemia chemoresistance involves innate and acquired leukemic side population cells. Leukemia, 2010, 24, 1885-1892.	3.3	17
86	Immune recovery after fludarabine–cyclophosphamide–rituximab treatment in B-chronic lymphocytic leukemia: implication for maintenance immunotherapy. Leukemia, 2010, 24, 1310-1316.	3.3	51
87	Phosphoantigens Overcome Human TCRVγ9+γδ Cell Immunosuppression by TGF-β: Relevance for Cancer Immunotherapy. Journal of Immunology, 2010, 184, 6680-6687.	0.4	25
88	Vγ9Vδ2 T Lymphocytes Efficiently Recognize and Kill Zoledronate-Sensitized, Imatinib-Sensitive, and Imatinib-Resistant Chronic Myelogenous Leukemia Cells. Journal of Immunology, 2010, 184, 3260-3268.	0.4	132
89	Emerging Concepts for the Treatment of Hematological Malignancies with Therapeutic Monoclonal Antibodies. Current Drug Targets, 2010, 11, 790-800.	1.0	10
90	Anti-inflammatory and immunosuppressive activation of human monocytes by a bioactive dendrimer. Journal of Leukocyte Biology, 2009, 85, 553-562.	1.5	89

#	Article	IF	CITATIONS
91	A regulatory crossâ€ŧalk between Vγ9VÎ′2 T lymphocytes and mesenchymal stem cells. European Journal of Immunology, 2009, 39, 752-762.	1.6	85
92	Pitfalls on the roadmap to $\hat{1}^{3}\hat{1}$ T cell-based cancer immunotherapies. Immunology Letters, 2009, 124, 1-8.	1.1	35
93	Dendrimers ended by non-symmetrical azadiphosphonate groups: Synthesis and immunological properties. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3963-3966.	1.0	37
94	Comparative study on the immunogenicity between an HLA-A24-restricted cytotoxic T-cell epitope derived from survivin and that from its splice variant survivin-2B in oral cancer patients. Journal of Translational Medicine, 2009, 7, 1.	1.8	74
95	Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy. Journal of Translational Medicine, 2009, 7, 82.	1.8	68
96	Bromohydrin pyrophosphate enhances antibody-dependent cell-mediated cytotoxicity induced by therapeutic antibodies. Blood, 2009, 113, 4875-4884.	0.6	123
97	A Functional γÎTCR/CD3 Complex Distinct from γÎT Cells Is Expressed by Human Eosinophils. PLoS ONE, 2009, 4, e5926.	1.1	53
98	Tailored Control and Optimisation of the Number of Phosphonic Acid Termini on Phosphorusâ€Containing Dendrimers for the Exâ€Vivo Activation of Human Monocytes. Chemistry - A European Journal, 2008, 14, 4836-4850.	1.7	102
99	Trogocytosis and killing of IL-4-polarized monocytes by autologous NK cells. Journal of Leukocyte Biology, 2008, 84, 1298-1305.	1.5	20
100	Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours. PLoS ONE, 2008, 3, e3894.	1.1	84
101	Lipophilic Fluorochrome Trackers of Membrane Transfers between Immune Cells. Immunological Investigations, 2007, 36, 665-685.	1.0	18
102	Multiplication of Human Natural Killer Cells by Nanosized Phosphonate-Capped Dendrimers. Angewandte Chemie - International Edition, 2007, 46, 2523-2526.	7.2	138
103	A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct Î ³ δ and αβ T cell responses in primates. European Journal of Immunology, 2007, 37, 549-565.	1.6	40
104	Self/non-self discrimination by human Î ³ δT cells: simple solutions for a complex issue?. Immunological Reviews, 2007, 215, 123-135.	2.8	121
105	Human Î ³ δT lymphocytes strip and kill tumor cells simultaneously. Immunology Letters, 2007, 110, 42-53.	1.1	31
106	Phosphoantigens and aminobisphosphonates: New leads targeting Î ³ δT lymphocytes for cancer immunotherapy. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 17-23.	0.5	18
107	CXCR5 Identifies a Subset of Vγ9VÎ́2 T Cells which Secrete IL-4 and IL-10 and Help B Cells for Antibody Production. Journal of Immunology, 2006, 177, 5290-5295.	0.4	133
108	Design of phosphorylated dendritic architectures to promote human monocyte activation. FASEB Journal, 2006, 20, 2339-2351.	0.2	132

#	Article	IF	CITATIONS
109	Sensing cell stress and transformation through Vγ9VÎ′2 T cell-mediated recognition of the isoprenoid pathway metabolites. Microbes and Infection, 2005, 7, 503-509.	1.0	76
110	Promoting the learning of immunology in developing countries. Nature Reviews Immunology, 2005, 5, 893-898.	10.6	7
111	CD4+ T Cells Downregulate Bcl-2 in Germinal Centers. Journal of Clinical Immunology, 2005, 25, 224-229.	2.0	8
112	Profiling Blood Lymphocyte Interactions with Cancer Cells Uncovers the Innate Reactivity of Human γδ T Cells to Anaplastic Large Cell Lymphoma. Journal of Immunology, 2005, 174, 1717-1722.	0.4	38
113	In Vivo Immunomanipulation of Vγ9VΠ2 T Cells with a Synthetic Phosphoantigen in a Preclinical Nonhuman Primate Model. Journal of Immunology, 2005, 175, 5471-5480.	0.4	179
114	Mechanism of Actions of Non Peptide Antigens Activating Human Vγ9 / Vδ2 T Lymphocytes and their Potential Use for Immunointervention. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2005, 4, 161-168.	0.4	1
115	Non-peptide antigens activating human Vγ9/VÎ″2 T lymphocytes. Immunology Letters, 2004, 95, 129-138.	1.1	59
116	FcγRIII discriminates between 2 subsets of Vγ9VÎ″2 effector cells with different responses and activation pathways. Blood, 2004, 104, 1801-1807.	0.6	136
117	Acquisition of Viral Receptor by NK Cells Through Immunological Synapse. Journal of Immunology, 2003, 170, 5993-5998.	0.4	135
118	Uncoupling between Immunological Synapse Formation and Functional Outcome in Human Î ³ δT Lymphocytes. Journal of Immunology, 2003, 171, 5027-5033.	0.4	37
119	Spontaneous Membrane Transfer Through Homotypic Synapses Between Lymphoma Cells. Journal of Immunology, 2003, 171, 2517-2523.	0.4	44
120	Synaptic Transfer by Human γδT Cells Stimulated with Soluble or Cellular Antigens. Journal of Immunology, 2002, 168, 6336-6343.	0.4	67
121	Escherichia coli Produces Phosphoantigens Activating Human γδT Cells. Journal of Biological Chemistry, 2002, 277, 148-154.	1.6	47
122	Evidence for Early Infection of Nonneoplastic Natural Killer Cells by Epstein-Barr Virus. Journal of Virology, 2002, 76, 11139-11142.	1.5	35
123	Phosphoantigen Presentation by Macrophages to Mycobacterium tuberculosis- Reactive Vγ9Vδ2 + T Cells: Modulation by Chloroquine. Infection and Immunity, 2002, 70, 4019-4027.	1.0	35
124	Ex vivo development of functional human lymph node and bronchus-associated lymphoid tissue. Blood, 2002, 99, 2483-2489.	0.6	14
125	Human γδT Cells Induce Dendritic Cell Maturation. Clinical Immunology, 2002, 103, 296-302.	1.4	156
126	Active trans-synaptic capture of membrane fragments by natural killer cells. European Journal of Immunology, 2002, 32, 1502.	1.6	87

#	Article	IF	CITATIONS
127	Mistletoe viscotoxins increase natural killer cell-mediated cytotoxicity. FEBS Journal, 2002, 269, 2591-2600.	0.2	58
128	Characterization of Phosphoantigens by High-Performance Anion-Exchange Chromatographyâ^'Electrospray Ionization Ion Trap Mass Spectrometry and Nanoelectrospray Ionization Ion Trap Mass Spectrometry. Analytical Chemistry, 2001, 73, 3562-3569.	3.2	11
129	Synthetic Phosphoantigens Enhance Human Vγ9Vδ2 T Lymphocytes Killing of Non-Hodgkin's B Lymphoma. Molecular Medicine, 2001, 7, 711-722.	1.9	66
130	Y2K+1 state-of-the-art on non-peptide phosphoantigens, a novel category of immunostimulatory molecules. Microbes and Infection, 2001, 3, 645-654.	1.0	34
131	Differential activation of human γ δ cells by nonpeptide phosphoantigens. European Journal of Immunology, 2001, 31, 1628-1635.	1.6	50
132	Structure of a human $\hat{1}^{3}\hat{1}$ T-cell antigen receptor. Nature, 2001, 411, 820-824.	13.7	233
133	Chemical Synthesis and Biological Activity of Bromohydrin Pyrophosphate, a Potent Stimulator of Human γδT Cells. Journal of Biological Chemistry, 2001, 276, 18337-18344.	1.6	141
134	Granulysinâ€Ðependent Killing of Intracellular and ExtracellularMycobacterium tuberculosisby Vγ9/Vδ2 T Lymphocytes. Journal of Infectious Diseases, 2001, 184, 1082-1085.	1.9	241
135	Differential activation of human $\hat{I}^3 \hat{e} \ll \hat{I}$ cells by nonpeptide phosphoantigens. , 2001, 31, 1628.		1
136	Synthetic phosphoantigens enhance human Vgamma9Vdelta2 T lymphocytes killing of non-Hodgkin's B lymphoma. Molecular Medicine, 2001, 7, 711-22.	1.9	18
137	Vγ9 / Vβ2 T lymphocytes reduce the viability of intracellularMycobacterium tuberculosis. European Journal of Immunology, 2000, 30, 1512-1519.	1.6	123
138	A flavonoid sulfate antigen activates human α β CD8+ Th2 lymphocytes in pollen allergy. European Journal of Immunology, 2000, 30, 964-968.	1.6	10
139	A chemical basis for recognition of nonpeptide antigens by human γδT cells*. FASEB Journal, 2000, 14, 1669-1670.	0.2	77
140	Metabolic Routes as Targets for Immunological Discrimination of Host and Parasite. Infection and Immunity, 2000, 68, 4375-4377.	1.0	32
141	Ligandâ€6pecific αβ and γδT Cell Responses in Childhood Tuberculosis. Journal of Infectious Diseases, 2000, 181, 294-301.	1.9	31
142	Predominance of Vγ9/Vδ2 T Lymphocytes in the Cerebrospinal Fluid of Children with Tuberculous Meningitis: Reversal after Chemotherapy. Molecular Medicine, 1999, 5, 301-312.	1.9	30
143	3-Formyl-1-butyl Pyrophosphate A Novel Mycobacterial Metabolite-activating Human Î ³ δT Cells. Journal of Biological Chemistry, 1999, 274, 32079-32084.	1.6	109
144	Murine natural killer cells contribute to the granulomatous reaction caused by mycobacterial cell walls. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5141-5146.	3.3	189

#	Article	IF	CITATIONS
145	Activation and control of self-reactive $\hat{I}^{\hat{J}}\hat{I}$ T cells. Microbes and Infection, 1999, 1, 247-253.	1.0	13
146	Regulation by cytokines (IL-12, IL-15, IL-4 and IL-10) of the Vγ9VΠ2 T cell response to mycobacterial phosphoantigens in responder and anergic HIV-infected persons. European Journal of Immunology, 1999, 29, 90-99.	1.6	36
147	Conventional and non-conventional recognition of non-peptide antigens by T lymphocytes. Comptes Rendus De L'Académie Des Sciences SA©rie 3, Sciences De La Vie, 1999, 322, 919-924.	0.8	5
148	Acquisition of a stimulatory activity for Vl̂39/Vl̂2 T cells by a Burkitt's lymphoma cell line without loss of HLA class I expression. Human Immunology, 1999, 60, 928-938.	1.2	9
149	Predominance of Vgamma9/Vdelta2 T lymphocytes in the cerebrospinal fluid of children with tuberculous meningitis: reversal after chemotherapy. Molecular Medicine, 1999, 5, 301-12.	1.9	16
150	Phosphoantigen activation induces surface translocation of intracellular CD94/NKG2A class I receptor on CD94â'' peripheral Vγ9 VÎ′2 T cells but not on CD94â'' thymic or mature γ Î′ T cell clones. European Journal of Immunology, 1998, 28, 3399-3410.	1.6	40
151	Expansion of Vγ9Vδ2 T Cells Is Triggered by <i>Francisella tularensis</i> -Derived Phosphoantigens in Tularemia but Not after Tularemia Vaccination. Infection and Immunity, 1998, 66, 2107-2114.	1.0	101
152	γδT cell activation or anergy during infections: the role of nonpeptidic TCR ligands and HLA class I molecules. Journal of Leukocyte Biology, 1997, 62, 287-291.	1.5	27
153	Patterns of Phosphoantigen Stimulation of Human Vγ9/Vδ2 T Cell Clones Include Th0 Cytokines. Human Immunology, 1997, 58, 70-82.	1.2	41
154	Control of self-reactive cytotoxic T lymphocytes expressing Î ³ δT cell receptors by natural killer inhibitory receptors. European Journal of Immunology, 1997, 27, 2812-2821.	1.6	150
155	CD94/NKG2 inhibitory receptor complex modulates both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive V gamma 9V delta 2 T lymphocytes. Journal of Immunology, 1997, 159, 6009-17.	0.4	116
156	Stimulation of $\hat{I}^{\hat{J}}\hat{I}$ T cells by phosphoantigens. Research in Immunology, 1996, 147, 338-347.	0.9	65
157	Human γδT cells in tuberculosis. Research in Immunology, 1996, 147, 542-549.	0.9	23
158	Cytometric detection of mycobacterial surface antigens: exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. Journal of Bacteriology, 1996, 178, 7254-7259.	1.0	21
159	A novel nucleotide-containing antigen for human blood Î ³ δT lymphocytes. European Journal of Immunology, 1996, 26, 2344-2349.	1.6	53
160	High-pH Anion-Exchange Chromatographic Analysis of Phosphorylated Compounds: Application to Isolation and Characterization of Nonpeptide Mycobacterial Antigens. Analytical Biochemistry, 1996, 243, 119-126.	1.1	19
161	Plasmodium falciparum stimuli for human gammadelta T cells are related to phosphorylated antigens of mycobacteria. Infection and Immunity, 1996, 64, 2892-2896.	1.0	122
162	Peripheral V gamma 9/V delta 2 T cell deletion and anergy to nonpeptidic mycobacterial antigens in asymptomatic HIV-1-infected persons. Journal of Immunology, 1996, 157, 449-61.	0.4	109

#	Article	IF	CITATIONS
163	Mannosylated Lipoarabinomannan Interacts with Phagocytes. FEBS Journal, 1995, 231, 440-447.	0.2	64
164	The antituberculous Mycobacterium bovis BCG vaccine is an attenuated mycobacterial producer of phosphorylated nonpeptidic antigens for human gamma delta T cells. Infection and Immunity, 1995, 63, 4628-4633.	1.0	56
165	Early activation of human V gamma 9V delta 2 T cell broad cytotoxicity and TNF production by nonpeptidic mycobacterial ligands. Journal of Immunology, 1995, 154, 5986-94.	0.4	144
166	Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science, 1994, 264, 267-270.	6.0	704
167	Specific binding of phenolic glycolipid antigens fromMycobacterium bovisBCG with antibodies. FEBS Letters, 1992, 303, 22-26.	1.3	4
168	Isolation and structural characteristics of a monoclonal antibody-defined cross-reactive phospholipid antigen from Mycobacterium tuberculosis and Mycobacterium leprae Journal of Biological Chemistry, 1991, 266, 1211-1219.	1.6	13
169	Isolation and structural characteristics of a monoclonal antibody-defined cross-reactive phospholipid antigen from Mycobacterium tuberculosis and Mycobacterium leprae. Journal of Biological Chemistry, 1991, 266, 1211-9.	1.6	9
170	Structural and immunological properties of the phenolic glycolids from Mycobacterium gastri and Mycobacterium kansasii. FEBS Journal, 1990, 189, 167-173.	0.2	18
171	Inhibition of human lymphoproliferative responses by mycobacterial phenolic glycolipids. Infection and Immunity, 1989, 57, 3653-3659.	1.0	64
172	Particular matrix for fast atom bombardment mass spectrometric analysis of phenolic glycolipid antigens isolated from pathogen mycobacteria. Biological Mass Spectrometry, 1988, 16, 275-278.	0.5	7
173	Structural analogy between the major phenolic glycolipid antigens from two Myobacteria species: kansasii and gastri. Chemistry and Physics of Lipids, 1988, 48, 129-134.	1.5	13
174	Identification of partially methylated methyl glycosides by gas chromatography-mass spectrometry of trimethylsilyl derivatives. Journal of Chromatography A, 1988, 445, 87-95.	1.8	10
175	Synthesis and Serological Properties of Methyl 2,6-Dideoxy-4-O-Me-α-D and L- arabino - hexopyranoside Present in the Glycolipid Phenolic Antigen of Mycobactkrium Kansasii. Journal of Carbohydrate Chemistry, 1988, 7, 733-748.	0.4	14
176	Absolute configuration of the unique 2,6-dideoxy-4-O-methyl-arabino-hexopyranose of the major phenolic glycolipid antigen from Mycobacterium kansasii. FEBS Journal, 1987, 168, 181-183.	0.2	24
177	A novel mannose containing phenolic glycolipid from Mycobacterium kansasii Journal of Biological Chemistry, 1987, 262, 14879-14884.	1.6	34
178	Specificity of a Mycobacterium kansasii phenolic glycolipid (mycoside A) immunoserum. Journal of Clinical Microbiology, 1987, 25, 2270-2273.	1.8	37
179	A novel mannose containing phenolic glycolipid from Mycobacterium kansasii. Journal of Biological Chemistry, 1987, 262, 14879-84.	1.6	29
180	Structural elucidation of the major phenolic glycolipid from Mycobacterium kansasii. I. Evidence for tetrasaccharide structure of the oligosaccharide moiety. Journal of Biological Chemistry, 1987, 262, 3174-9.	1.6	47

#	Article	IF	CITATIONS
181	Structural elucidation of the major phenolic glycolipid from Mycobacterium kansasii. II. Presence of a novel dideoxyhexose. Journal of Biological Chemistry, 1987, 262, 3180-4.	1.6	37
182	Identification of stereoisomers of some hexoses by mass spectrometry using fast atom bombardment and mass ion kinetic energy. Analytical Chemistry, 1985, 57, 892-894.	3.2	55
183	Differentiation of some underivatised anomeric methyl glycosides by f.a.b. and m.i.k.e. mass spectrometry. Carbohydrate Research, 1985, 140, 131-134.	1.1	31
184	Stereoisomer differentiation of 2-acetamido-2-deoxyhexose by mass spectrometric measurement of relative gas-phase alkali ion affinities. Analytical Chemistry, 1985, 57, 2287-2289.	3.2	25