Guisheng Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7380006/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	AAV-ie-K558R mediated cochlear gene therapy and hair cell regeneration. Signal Transduction and Targeted Therapy, 2022, 7, 109.	17.1	22
2	Multiregional profiling of the brain transmembrane proteome uncovers novel regulators of depression. Science Advances, 2021, 7, .	10.3	13
3	Rational Remodeling of Atypical Scaffolds for the Design of Photoswitchable Cannabinoid Receptor Tools. Journal of Medicinal Chemistry, 2021, 64, 13752-13765.	6.4	9
4	Elucidation of Distinct Modular Assemblies of Smoothened Receptor by Bitopic Ligand Measurement. Journal of Medicinal Chemistry, 2021, 64, 13830-13840.	6.4	3
5	Structure-Based Design of Dual-Acting Compounds Targeting Adenosine A _{2A} Receptor and Histone Deacetylase as Novel Tumor Immunotherapeutic Agents. Journal of Medicinal Chemistry, 2021, 64, 16573-16597.	6.4	16
6	Organized cannabinoid receptor distribution in neurons revealed by super-resolution fluorescence imaging. Nature Communications, 2020, 11, 5699.	12.8	18
7	Recent development of AAV-based gene therapies for inner ear disorders. Gene Therapy, 2020, 27, 329-337.	4.5	8
8	Enhancer Reprogramming within Pre-existing Topologically Associated Domains Promotes TGF-β-Induced EMT and Cancer Metastasis. Molecular Therapy, 2020, 28, 2083-2095.	8.2	22
9	A Novel G Protein-Biased and Subtype-Selective Agonist for a G Protein-Coupled Receptor Discovered from Screening Herbal Extracts. ACS Central Science, 2020, 6, 213-225.	11.3	25
10	Structure and function of subcortical periodic cytoskeleton throughout the nervous system. STEMedicine, 2020, 1, e9.	1.0	2
11	Calcineurin Signaling Mediates Disruption of the Axon Initial Segment Cytoskeleton after Injury. IScience, 2020, 23, 100880.	4.1	9
12	Differentiation of human adipose-derived stem cells into neuron/motoneuron-like cells for cell replacement therapy of spinal cord injury. Cell Death and Disease, 2019, 10, 597.	6.3	65
13	AAV-ie enables safe and efficient gene transfer to inner ear cells. Nature Communications, 2019, 10, 3733.	12.8	136
14	ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nature Microbiology, 2019, 4, 2331-2346.	13.3	39
15	Critical role of spectrin in hearing development and deafness. Science Advances, 2019, 5, eaav7803.	10.3	113
16	Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α2C Adrenergic Receptor. Cell Reports, 2019, 29, 2936-2943.e4.	6.4	17
17	Structural Basis of the Diversity of Adrenergic Receptors. Cell Reports, 2019, 29, 2929-2935.e4.	6.4	30
18	Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. ELife, 2019, 8, .	6.0	47

GUISHENG ZHONG

#	Article	IF	CITATIONS
19	Identification of natural products as novel ligands for the human 5-HT2C receptor. Biophysics Reports, 2018, 4, 50-61.	0.8	23
20	Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains. ACS Nano, 2017, 11, 6985-6995.	14.6	41
21	Elevation in Total Homocysteine Levels in Chinese Patients With Essential Hypertension Treated With Antihypertensive Benazepril. Clinical and Applied Thrombosis/Hemostasis, 2016, 22, 191-198.	1.7	5
22	Developmental mechanism of the periodic membrane skeleton in axons. ELife, 2014, 3, .	6.0	199
23	Associations of MTHFR and MTRR Polymorphisms With Serum Lipid Levels in Chinese Hypertensive Patients. Clinical and Applied Thrombosis/Hemostasis, 2014, 20, 400-410.	1.7	22
24	A PIK3C3–Ankyrin-B–Dynactin pathway promotes axonal growth and multiorganelle transport. Journal of Cell Biology, 2014, 207, 735-752.	5.2	84
25	Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction. Molecular and Cellular Neurosciences, 2014, 61, 241-254.	2.2	45
26	Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons. Science, 2013, 339, 452-456.	12.6	1,066
27	Effect of Simvastatin on Plasma Homocysteine Levels and Its Modification by <scp>MTHFR</scp> C677T Polymorphism in Chinese Patients with Primary Hyperlipidemia. Cardiovascular Therapeutics, 2013, 31, e27-33.	2.5	22
28	Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. Journal of Physiology, 2012, 590, 4735-4759.	2.9	110
29	Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13978-13983.	7.1	439
30	Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. Journal of Neurophysiology, 2012, 108, 2191-2202.	1.8	31
31	Effect of simvastatin on plasma homocysteine levels and its modification by MTHFR C677T polymorphism in Chinese patients with primary hyperlipidemia. Cardiovascular Therapeutics, 2012, 31, n/a-n/a.	2.5	1
32	Electrophysiological Characterization of V2a Interneurons and Their Locomotor-Related Activity in the Neonatal Mouse Spinal Cord. Journal of Neuroscience, 2010, 30, 170-182.	3.6	139
33	Spatiotemporal Dynamics of Rhythmic Spinal Interneurons Measured With Two-Photon Calcium Imaging and Coherence Analysis. Journal of Neurophysiology, 2010, 104, 3323-3333.	1.8	28
34	In Mice Lacking V2a Interneurons, Gait Depends on Speed of Locomotion. Journal of Neuroscience, 2009, 29, 7098-7109.	3.6	226
35	Persistent Sodium Currents Participate in Fictive Locomotion Generation in Neonatal Mouse Spinal Cord. Journal of Neuroscience, 2007, 27, 4507-4518.	3.6	115
36	Serotonin Modulates the Properties of Ascending Commissural Interneurons in the Neonatal Mouse Spinal Cord. Journal of Neurophysiology, 2006, 95, 1545-1555.	1.8	56

#	Article	IF	CITATIONS
37	Intrinsic and Functional Differences among Commissural Interneurons during Fictive Locomotion and Serotonergic Modulation in the Neonatal Mouse. Journal of Neuroscience, 2006, 26, 6509-6517.	3.6	64