Daofei Lv

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379984/publications.pdf

Version: 2024-02-01

		471371	580701
25	1,259	17	25
papers	citations	h-index	g-index
25	25	25	1248
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	The modulation of <scp>ethaneâ€selective</scp> adsorption performance in series of bimetal <scp>PCN</scp> â€250 metal–organic frameworks: Impact of metal composition. AICHE Journal, 2022, 68, e17385.	1.8	11
2	Recent advances in adsorptive separation of ethane and ethylene by C2H6-selective MOFs and other adsorbents. Chemical Engineering Journal, 2022, 431, 133208.	6.6	58
3	Highly selective separation of propylene/propane mixture on cost-effectively four-carbon linkers based metal-organic frameworks. Chinese Journal of Chemical Engineering, 2022, 51, 126-134.	1.7	5
4	A Ni-based metal-organic framework with super-high C3H8 uptake for adsorptive separation of light alkanes. Separation and Purification Technology, 2021, 266, 118198.	3.9	18
5	Preferential adsorption of ethane over ethylene on a Zr-based metal–organic framework: impacts of C–Hâ∢N hydrogen bonding. New Journal of Chemistry, 2021, 45, 8045-8053.	1.4	16
6	Highly Efficient Capture of Postcombustion Generated CO ₂ through a Copper-Based Metal–Organic Framework. Energy & Fuels, 2021, 35, 610-617.	2.5	14
7	Efficient adsorptive separation of propene over propane through a pillarâ€layer cobaltâ€based metal–organic framework. AICHE Journal, 2020, 66, e16858.	1.8	34
8	Improving <scp>CH₄</scp> / <scp>N₂</scp> selectivity within isomeric Alâ€based MOFs for the highly selective capture of coalâ€mine methane. AICHE Journal, 2020, 66, e16287.	1.8	42
9	Synthesis and Adsorption Performance of Ag/ \hat{I}^3 -Al ₂ O ₃ with High Adsorption Capacities for Dibenzyl Disulfide. Industrial & Engineering Chemistry Research, 2020, 59, 6164-6171.	1.8	6
10	Hydrotalcite-assisted rapid synthesis of HKUST-1 toward efficient benzene capture. AIP Advances, 2020, 10, 125311.	0.6	3
11	Ultrahigh CO2/CH4 and CO2/N2 adsorption selectivities on a cost-effectively L-aspartic acid based metal-organic framework. Chemical Engineering Journal, 2019, 375, 122074.	6.6	50
12	Rapid room temperature conversion of hydroxy double salt to MOF-505 for CO ₂ capture. CrystEngComm, 2019, 21, 165-171.	1.3	13
13	Ethane-Selective Behavior Achieved on a Nickel-Based Metal–Organic Framework: Impact of Pore Effect and Hydrogen Bonds. Industrial & Engineering Chemistry Research, 2019, 58, 10516-10523.	1.8	15
14	Moisture stability of ethaneâ€selective Ni(II), Fe(III), Zr(IV)â€based metal–organic frameworks. AICHE Journal, 2019, 65, e16616.	1.8	28
15	An indium-based ethane-trapping MOF for efficient selective separation of C2H6/C2H4 mixture. Separation and Purification Technology, 2019, 212, 51-56.	3.9	49
16	Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent. ACS Applied Materials & Diterfaces, 2018, 10, 8366-8373.	4.0	112
17	Iron-Based Metal–Organic Framework with Hydrophobic Quadrilateral Channels for Highly Selective Separation of Hexane Isomers. ACS Applied Materials & Separation of Hexane Isomers.	4.0	43
18	Highly Adsorptive Separation of Ethane/Ethylene by An Ethane-Selective MOF MIL-142A. Industrial & Engineering Chemistry Research, 2018, 57, 4063-4069.	1.8	88

Daofei Lv

#	Article	IF	CITATION
19	An ethane-trapping MOF PCN-250 for highly selective adsorption of ethane over ethylene. Chemical Engineering Science, 2018, 175, 110-117.	1.9	177
20	An Ultramicroporous Nickel-Based Metal–Organic Framework for Adsorption Separation of CO ₂ over N ₂ or CH ₄ . Energy & Energ	2.5	23
21	Selective Adsorptive Separation of CO ₂ /CH ₄ and CO ₂ /N ₂ by a Water Resistant Zirconium–Porphyrin Metal–Organic Framework. Industrial & Engineering Chemistry Research, 2018, 57, 12215-12224.	1.8	48
22	Efficient Mechanochemical Synthesis of MOF-5 for Linear Alkanes Adsorption. Journal of Chemical & Engineering Data, 2017, 62, 2030-2036.	1.0	101
23	Enhanced Adsorption Performance of Aromatics on a Novel Chromium-Based MIL-101@Graphite Oxide Composite. Energy & Energy	2.5	20
24	Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chemical Engineering Science, 2017, 158, 539-544.	1.9	55
25	A new MOF-505@GO composite with high selectivity for CO 2 /CH 4 and CO 2 /N 2 separation. Chemical Engineering Journal, 2017, 308, 1065-1072.	6.6	230