Mohamed Hemida Abd-Alla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using fermentation waste of ethanolâ€producing yeast for bacterial riboflavin production and recycling of spent bacterial mass for enhancing the growth of oily plants. Journal of Applied Microbiology, 2021, , .	1.4	1
2	Alleviation of the toxicity of oily wastewater to canola plants by the N2-fixing, aromatic hydrocarbon biodegrading bacterium Stenotrophomonas maltophilia-SR1. Applied Soil Ecology, 2020, 154, 103654.	2.1	30
3	Characterization of anodic biofilm bacterial communities and performance evaluation of a mediator-free microbial fuel cell. Environmental Engineering Research, 2020, 25, 862-870.	1.5	14

Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer) Tj ETQq000 rgBT /Overlock 10 Tf $\frac{1}{124}$

5	Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. Biocatalysis and Agricultural Biotechnology, 2019, 19, 101112.	1.5	25
6	Production of butanol and polyhydroxyalkanoate from industrial waste by <i>Clostridium beijerinckii</i> ASU10. International Journal of Energy Research, 2019, 43, 3640-3652.	2.2	20
7	Enhancement of biohydrogen production from sustainable orange peel wastes usingEnterobacterspecies isolated from domestic wastewater. International Journal of Energy Research, 2019, 43, 391-404.	2.2	25
8	Fungi-induced paint deterioration and air contamination in the Assiut University hospital, Egypt. Indoor and Built Environment, 2019, 28, 384-400.	1.5	9
9	Enhancement of exopolysaccharide production by Stenotrophomonas maltophilia and Brevibacillus parabrevis isolated from root nodules of Cicer arietinum L. and Vigna unguiculata L. (Walp.) plants. Rendiconti Lincei, 2018, 29, 117-129.	1.0	10
10	Effectiveness of eco-friendly arbuscular mycorrhizal fungi biofertilizer and bacterial feather hydrolysate in promoting growth of Vicia faba in sandy soil. Biocatalysis and Agricultural Biotechnology, 2018, 16, 140-147.	1.5	15
11	Conversion of food processing wastes to biofuel using clostridia. Anaerobe, 2017, 48, 135-143.	1.0	17
12	Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agriculture, Ecosystems and Environment, 2016, 218, 163-177.	2.5	91
13	Acetone–butanol–ethanol production from substandard and surplus dates by Egyptian native Clostridium strains. Anaerobe, 2015, 32, 77-86.	1.0	25
14	In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass. Anaerobe, 2015, 34, 125-131.	1.0	23
15	Improvement of fungal lipids esterification process by bacterial lipase for biodiesel synthesis. Fuel, 2015, 160, 196-204.	3.4	15
16	Improvement of medium components for high riboflavin production by Aspergillus terreus using response surface methodology. Rendiconti Lincei, 2015, 26, 335-344.	1.0	10
17	Nitrogen Fixing Cyanobacteria: Future Prospect. , 2014, , .		22
18	Alleviating the inhibitory effect of salinity stress on nod gene expression in Rhizobium tibeticum – fenugreek (Trigonella foenum graecum) symbiosis by isoflavonoids treatment. Journal of Plant Interactions, 2014, 9, 275-284.	1.0	18

#	Article	IF	CITATIONS
19	Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiological Research, 2014, 169, 49-58.	2.5	148
20	Activation of Rhizobium tibeticum With Flavonoids Enhances Nodulation, Nitrogen Fixation, and Growth of Fenugreek (Trigonella foenum-graecum L.) Grown in Cobalt-Polluted Soil. Archives of Environmental Contamination and Toxicology, 2014, 66, 303-315.	2.1	21
21	Hydrochemical and bacteriological analyses of groundwater and its suitability for drinking and agricultural uses at Manfalut District, Assuit, Egypt. Arabian Journal of Geosciences, 2014, 7, 4593-4613.	0.6	9
22	Enhancement of biodiesel, hydrogen and methane generation from molasses by Cunninghamella echinulata and anaerobic bacteria through sequential three-stage fermentation. Energy, 2014, 78, 543-554.	4.5	18
23	Two stage biodiesel and hydrogen production from molasses by oleaginous fungi and Clostridium acetobutylicum ATCC 824. International Journal of Hydrogen Energy, 2014, 39, 3185-3197.	3.8	53
24	Rhizobium tibeticum activated with a mixture of flavonoids alleviates nickel toxicity in symbiosis with fenugreek (Trigonella foenum graecum L.). Ecotoxicology, 2014, 23, 946-959.	1.1	12
25	Green Synthesis of Silver Nanoparticles by Water Soluble Fraction of the Extracellular Polysaccharides/Matrix of the Cyanobacterium Nostoc Commune and its Application as a Potent Fungal Surface Sterilizing Agent of Seed Crops. Universal Journal of Microbiology Research, 2014, 2, 36-43.	0.3	45
26	Protease-producing microorganisms inhabiting salted fish (Moloha) with special reference to protease activity of Bacillus subtilis. Acta Societatis Botanicorum Poloniae, 2014, 63, 303-307.	0.8	1
27	Biosynthesis of L-Glutaminase by Streptomyces Variabilis ASU319 Isolated from Rhizosphere of Triticum Vulgaris. Universal Journal of Microbiology Research, 2013, 1, 27-35.	0.3	7
28	Isolation and characterization of a heavy-metal-resistant isolate of Rhizobium leguminosarum bv. viciae potentially applicable for biosorption of Cd2+ and Co2+. International Biodeterioration and Biodegradation, 2012, 67, 48-55.	1.9	65
29	Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass and Bioenergy, 2012, 42, 172-178.	2.9	111
30	Nodulation and nitrogen fixation in interspecies grafts of soybean and common bean is controlled by isoflavonoid signal molecules translocated from shoot. Plant, Soil and Environment, 2011, 57, 453-458.	1.0	25
31	Hydrogen production from rotten dates by sequential three stages fermentation. International Journal of Hydrogen Energy, 2011, 36, 13518-13527.	3.8	47
32	Isolation and characterization of Serratia rubidaea from dark brown spots of tomato fruits. Phytoparasitica, 2011, 39, 175-183.	0.6	8
33	First report of soft rot of onion bulbs in storage caused by <i>Pseudomonas aeruginosa</i> in Egypt. Journal of Plant Interactions, 2011, 6, 229-238.	1.0	14
34	Occurrence of Xanthomonas axonopodis pv. phaseoli, the causal agent of common bacterial blight disease, on seeds of common bean (Phaseolus vulgaris L.) in upper Egypt. Folia Microbiologica, 2010, 55, 47-52.	1.1	6
35	Bacterial wilt and spot of tomato caused by Xanthomonas vesicatoria and Ralstonia solanacearum in Egypt. World Journal of Microbiology and Biotechnology, 2008, 24, 291-292.	1.7	11
36	Title is missing!. Plant Growth Regulation, 2001, 34, 241-250.	1.8	14

#	Article	IF	CITATIONS
37	SURVIVAL OF RHIZOBIA/BRADYRHIZOBIA AND A ROCK-PHOSPHATE-SOLUBILIZING FUNGUSASPERGILLUS NIGERON VARIOUS CARRIERS FROM SOME AGRO-INDUSTRIAL WASTES AND THEIR EFFECTS ON NODULATION AND GROWTH OF FABA BEAN AND SOYBEAN. Journal of Plant Nutrition, 2001, 24, 261-272.	0.9	45
38	Physiological aspects of fungi isolated from root nodules of faba bean (Vicia faba L.). Microbiological Research, 2000, 154, 339-347.	2.5	30
39	Functional structure of the indeterminate Vicia faba L. root nodule: implications for metabolite transport. Journal of Plant Physiology, 2000, 157, 335-343.	1.6	31
40	The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Applied Soil Ecology, 2000, 14, 191-200.	2.1	98
41	Title is missing!. World Journal of Microbiology and Biotechnology, 1999, 15, 715-722.	1.7	4
42	Nodulation and nitrogen fixation of Lupinus species with Bradyrhizobium (lupin) strains in iron-deficient soil. Biology and Fertility of Soils, 1999, 28, 407-415.	2.3	12
43	Effect ofLupinus seed diffusates onBradyrhizobium sp. growth and nodulation of lupine. Folia Microbiologica, 1998, 43, 182-186.	1.1	1
44	Biocontrol of fungal root rot diseases of crop plants by the use of rhizobia and bradyrhizobia. Folia Microbiologica, 1998, 43, 431-437.	1.1	38
45	Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. European Journal of Soil Biology, 1998, 34, 99-104.	1.4	20
46	Genotypic Differences in Dinitrogen Fixation Response to NaCl Stress in Intact and Grafted Soybean. Crop Science, 1998, 38, 72-77.	0.8	62
47	Hypernodulation of Soybean, Mung Bean, and Hyacinth Bean Is Controlled by a Common Shoot Signal. Crop Science, 1997, 37, 1242-1246.	0.8	23
48	Wheat straw and cellulolytic fungi application increases nodulation, nodule efficiency and growth of fenugreek (Trigonella foenum-graceum L.) grown in saline soil. Biology and Fertility of Soils, 1997, 26, 58-65.	2.3	16
49	Root-hair infection and nodulation of four grain legumes as affected by the form and the application time of nitrogen fertilizer. Folia Microbiologica, 1996, 41, 303-308.	1.1	32
50	Effect of form and level of applied nitrogen on nitrogenase and nitrate reductase activities in faba beans. Biologia Plantarum, 1995, 37, 57.	1.9	3
51	Survival ofRhizobium leguminosarum biovarviceae subjected to heat, drought and salinity in soil. Biologia Plantarum, 1995, 37, 131-137.	1.9	10
52	The role of potassium fertilizer in nodulation and nitrogen fixation of faba bean (Vicia faba L.) plants under drought stress. Biology and Fertility of Soils, 1995, 20, 147-150.	2.3	31
53	Response of nitrogen fixation, nodule activities, and growth to potassium supply in waterâ€stressed broad bean. Journal of Plant Nutrition, 1995, 18, 1391-1402.	0.9	20
54	Enhancement of faba bean nodulation, nitrogen fixation and growth by different microorganisms. Biologia Plantarum, 1994, 36, 295-300.	1.9	8

#	Article	IF	CITATIONS
55	Use of organic phosphorus byRhizobium leguminosarum biovarviceae phosphatases. Biology and Fertility of Soils, 1994, 18, 216-218.	2.3	77
56	Natural occurrence of mycotoxins in broad bean (Vicia faba l.) seeds and their effect onRhizobium-legume symbiosis. Journal of Basic Microbiology, 1994, 34, 97-103.	1.8	3
57	Suitability of some local agro-industrial wastes as carrier materials for cyanobacterial inoculant. Folia Microbiologica, 1994, 39, 576-578.	1.1	5
58	Growth and enzyme activities of fungi and bacteria in soil salinized with sodium chloride. Folia Microbiologica, 1994, 39, 23-28.	1.1	55
59	Solubilization of rock phosphates byRhizobium andBradyrhizobium. Folia Microbiologica, 1994, 39, 53-56.	1.1	49
60	Utilization of some phenolic compounds byAzotobacter chroococcum and their effect on growth and nitrogenase activity. Folia Microbiologica, 1994, 39, 57-60.	1.1	4
61	Biodegradation of plant wastes to sugars and protein by microorganisms. Folia Microbiologica, 1994, 39, 222-224.	1.1	1
62	Effect of biological treatments on growth and some metabolic activities of barley plants grown in saline soil. Microbiological Research, 1994, 149, 317-320.	2.5	6
63	Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Letters in Applied Microbiology, 1994, 18, 294-296.	1.0	78
64	Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides. Letters in Applied Microbiology, 1994, 19, 240-243.	1.0	22
65	Natural occurrence of mycotoxins in broad bean (Vicia faba L.) Seeds and their effect on Rhizobium-legume symbiosis. Soil Biology and Biochemistry, 1994, 26, 1081-1085.	4.2	11
66	Nodulation and nitrogen fixation of faba bean plants as influenced by the inoculation method of Rhizobium leguminosarum biovar viceae strain RCR 1001. Microbiological Research, 1994, 149, 65-68.	2.5	1
67	Effects of an organophosphorus insecticide on the growth and cellulolytic activity of fungi. International Biodeterioration and Biodegradation, 1993, 31, 305-310.	1.9	9
68	Herbicides Effects an Nodulation, Growth and Nitrogen Yield of Faba Bean Induced by Indigenous Rhizobium leguminosarum. Zentralblatt Für Mikrobiologie, 1993, 148, 593-597.	0.2	9
69	Acetylene reduction by Rhodospirillaceae from the Aswan High Dam Lake. World Journal of Microbiology and Biotechnology, 1992, 8, 151-154.	1.7	3
70	Effect of pesticides on growth, respiration and nitrogenase activity ofAzotobacter andAzospirillum. World Journal of Microbiology and Biotechnology, 1992, 8, 326-328.	1.7	14
71	Bradyrhizobium strains and the nodulation, nodule efficiency and growth of soybean (Glycine max L.) in Egyptian soils. World Journal of Microbiology and Biotechnology, 1992, 8, 593-597.	1.7	11
72	The role of cellulose-decomposing fungi in nitrogenase activity ofAzotobacter chroococcum. Folia Microbiologica, 1992, 37, 215-218.	1.1	9

#	Article	IF	CITATIONS
73	Impact of Harsh Environmental Conditions on Nodule Formation and Dinitrogen Fixation of Legumes. , 0, , .		15