Mattias Thorsell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379709/publications.pdf

Version: 2024-02-01

430874 501196 66 927 18 28 citations h-index g-index papers 66 66 66 790 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of in situ NH3 pre-treatment of LPCVD SiN passivation on GaN HEMT performance. Semiconductor Science and Technology, 2022, 37, 035011.	2.0	8
2	High Voltage and Low Leakage GaN-on-SiC MISHEMTs on a "Buffer-Free―Heterostructure. IEEE Electron Device Letters, 2022, 43, 781-784.	3.9	9
3	Instinctual Interference-Adaptive Low-Power Receiver With Combined Feedforward and Feedback Control. IEEE Microwave and Wireless Components Letters, 2021, 31, 771-774.	3.2	4
4	Analyzing The Back-Gating Effect in GaN HEMTs with Field-Plates Using an Empirical Trap Model. , 2021, , .		0
5	Microwave Performance of â€~Buffer-Free' GaN-on-SiC High Electron Mobility Transistors. IEEE Electron Device Letters, 2020, 41, 828-831.	3.9	40
6	Impact of AlGaN/GaN Interface and Passivation on the Robustness of Low-Noise Amplifiers. IEEE Transactions on Electron Devices, 2020, 67, 2297-2303.	3.0	6
7	Electric-Based Thermal Characterization of GaN Technologies Affected by Trapping Effects. IEEE Transactions on Electron Devices, 2020, 67, 1952-1958.	3.0	6
8	Thermal Analysis of GaN/SiC-on-Si Assemblies: Effect of Bump Pitch and Thickness of SiC Layer. , 2020, , .		0
9	Impact of Channel Thickness on the Large-Signal Performance in InAlGaN/AlN/GaN HEMTs With an AlGaN Back Barrier. IEEE Transactions on Electron Devices, 2019, 66, 364-371.	3.0	33
10	Small- and Large-Signal Analyses of Different Low-Pressure-Chemical-Vapor-Deposition SiN _{<i>x</i><} Passivations for Microwave GaN HEMTs. IEEE Transactions on Electron Devices, 2018, 65, 908-914.	3.0	11
11	Accurate Modeling of GaN HEMT RF Behavior Using an Effective Trapping Potential. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 845-857.	4.6	22
12	Electron Trapping in Extended Defects in Microwave AlGaN/GaN HEMTs With Carbon-Doped Buffers. IEEE Transactions on Electron Devices, 2018, 65, 2446-2453.	3.0	55
13	Differential Transmission Line Loop for RFID Reactive Near-Field Coupling. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 2141-2153.	4.6	3
14	Compensation of Performance Degradation due to Thermal Effects in GaN LNA Using Dynamic Bias. , 2018, , .		0
15	Compensation of Performance Degradation Due to Thermal Effects in GaN LNA Using Dynamic Bias. , 2018, , .		O
16	Optimizing the Signal-to-Noise and Distortion Ratio of a GaN LNA using Dynamic Bias. , 2018, , .		2
17	A GaN–SiC hybrid material for high-frequency and power electronics. Applied Physics Letters, 2018, 113,	3.3	56
18	Analysis of Lateral Thermal Coupling for GaN MMIC Technologies. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 4430-4438.	4.6	1

#	Article	IF	CITATIONS
19	Analysis of thermal effects in integrated radio transmitters. , 2018, , .		O
20	Analysis of thermal effects in integrated radio transmitters. , 2018, , .		0
21	Achieving Low-Recovery Time in AlGaN/GaN HEMTs With AlN Interlayer Under Low- Noise Amplifiers Operation. IEEE Electron Device Letters, 2017, 38, 926-928.	3.9	6
22	Lumped element balun with inherent complex impedance transformation. , 2017, , .		1
23	Design Equations for Lumped Element Balun With Inherent Complex Impedance Transformation. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 5162-5170.	4.6	13
24	Vector-corrected nonlinear multi-port IQ-mixer characterization using modulated signals., 2017,,.		3
25	On the modeling of high power FET transistors. , 2016, , .		6
26	Influence on Noise Performance of GaN HEMTs With $\langle i \rangle$ In Situ $\langle i \rangle$ and Low-Pressure-Chemical-Vapor-Deposition SiN $\langle sub \rangle \langle i \rangle \times \langle sub \rangle$ Passivation. IEEE Transactions on Electron Devices, 2016, 63, 3887-3892.	3.0	9
27	Wideband RF characterization setup with high dynamic range low frequency measurement capabilities. , $2016, , .$		5
28	Carbon-Doped GaN on SiC Materials for Low-Memory-Effect Devices. ECS Transactions, 2016, 75, 61-65.	0.5	2
29	Shifted Source Impedance and Nonlinearity Impact on RFID Transponder Communication for Drive-Level Offsets. IEEE Transactions on Microwave Theory and Techniques, 2016, 64, 299-309.	4.6	1
30	Application Relevant Evaluation of Trapping Effects in AlGaN/GaN HEMTs With Fe-Doped Buffer. IEEE Transactions on Electron Devices, 2016, 63, 326-332.	3.0	62
31	Performance Enhancement of Microwave GaN HEMTs Without an AlN-Exclusion Layer Using an Optimized AlGaN/GaN Interface Growth Process. IEEE Transactions on Electron Devices, 2016, 63, 333-338.	3.0	17
32	Impact of Trapping Effects on the Recovery Time of GaN Based Low Noise Amplifiers. IEEE Microwave and Wireless Components Letters, 2016, 26, 31-33.	3.2	23
33	High frequency electromagnetic detection by nonlinear conduction modulation in graphene nanowire diodes. Applied Physics Letters, 2015, 107, .	3. 3	19
34	Low-Pressure-Chemical-Vapor-Deposition SiNx passivated AlGaN/GaN HEMTs for power amplifier application. , 2015 , , .		1
35	Suppression of Dispersive Effects in AlGaN/GaN High-Electron-Mobility Transistors Using Bilayer SiN _{<i>x</i>} Grown by Low Pressure Chemical Vapor Deposition. IEEE Electron Device Letters, 2015, 36, 537-539.	3.9	25
36	Symmetry based nonlinear model for GaN HEMTs. , 2015, , .		3

#	Article	IF	CITATIONS
37	Evaluation of Thermal Versus Plasma-Assisted ALD Al ₂ 0 ₃ as Passivation for InAlN/AlN/GaN HEMTs. IEEE Electron Device Letters, 2015, 36, 235-237.	3.9	20
38	Dispersive Effects in Microwave AlGaN/AlN/GaN HEMTs With Carbon-Doped Buffer. IEEE Transactions on Electron Devices, 2015, 62, 2162-2169.	3.0	59
39	The Effect of Forward Gate Bias Stress on the Noise Performance of Mesa Isolated GaN HEMTs. IEEE Transactions on Device and Materials Reliability, 2015, 15, 40-46.	2.0	8
40	An Oscilloscope Correction Method for Vector-Corrected RF Measurements. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 2541-2547.	4.7	13
41	Symmetrical Modeling of GaN HEMTS. , 2014, , .		1
42	Symmetrical Large-Signal Modeling of Microwave Switch FETs. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 1590-1598.	4.6	15
43	Evaluation of an InAlN/AlN/GaN HEMT with Taâ€based ohmic contacts and PECVD SiN passivation. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 924-927.	0.8	18
44	A Novel Technique for GaN HEMT Trap States Characterisation. , 2013, , .		6
45	A novel active load-pull system with multi-band capabilities. , 2013, , .		9
46	Investigation of Push-Pull Microwave Power Amplifiers Using an Advanced Measurement Setup. IEEE Microwave and Wireless Components Letters, 2013, 23, 220-222.	3.2	8
47	A new baseband measurement system for characterization of memory effects in nonlinear microwave devices., 2012,,.		1
48	Noise temperature of an electronic tuner for noise parameter measurement systems. , 2012, , .		0
49	Extraction of an Electrothermal Mobility Model for AlGaN/GaN Heterostructures. IEEE Transactions on Electron Devices, 2012, 59, 3344-3349.	3.0	9
50	Fast Multiharmonic Active Load–Pull System With Waveform Measurement Capabilities. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 149-157.	4.6	28
51	Extending the Best Linear Approximation to Characterize the Nonlinear Distortion in GaN HEMTs. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 3087-3094.	4.6	3
52	Electrothermal Access Resistance Model for GaN-Based HEMTs. IEEE Transactions on Electron Devices, 2011, 58, 466-472.	3.0	24
53	Nonlinear Characterization of Varactors for Tunable Networks by Active Source–Pull and Load–Pull. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1753-1760.	4.6	6
54	High efficiency RF pulse width modulation with tunable load network class-E PA. , 2011, , .		3

#	Article	IF	Citations
55	Semi-physical nonlinear circuit model with device/physical parameters for HEMTs. International Journal of Microwave and Wireless Technologies, 2011, 3, 25-33.	1.9	3
56	On the Large Signal Evaluation and Modeling of GaN FET. IEICE Transactions on Electronics, 2010, E93-C, 1225-1233.	0.6	9
57	An X-Band AlGaN/GaN MMIC Receiver Front-End. IEEE Microwave and Wireless Components Letters, 2010, 20, 55-57.	3.2	42
58	Characterization setup for device level dynamic load modulation measurements. , 2009, , .		5
59	Thermal Study of the High-Frequency Noise in GaN HEMTs. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 19-26.	4.6	50
60	High-Efficiency LDMOS Power-Amplifier Design at 1 GHz Using an Optimized Transistor Model. IEEE Transactions on Microwave Theory and Techniques, 2009, 57, 1647-1654.	4.6	35
61	A Single-Ended Resistive \$X\$-Band AlGaN/GaN HEMT MMIC Mixer. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 2201-2206.	4.6	25
62	An AlGaN/GaN HEMT-Based Microstrip MMIC Process for Advanced Transceiver Design. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1827-1833.	4.6	49
63	SiC Varactors for Dynamic Load Modulation of High Power Amplifiers. IEEE Electron Device Letters, 2008, 29, 728-730.	3.9	15
64	Characterization of the temperature dependent access resistances in AlGaN/GaN HEMTs., 2008,,.		3
65	Thermal characterization of the intrinsic noise parameters for AlGaN/GaN HEMTs., 2008,,.		6
66	A DC Comparison Study between H-Intercalated and Native Epi-Graphenes on SiC Substrates. Materials Science Forum, 0, 740-742, 129-132.	0.3	2