
Sandra Camarero-Espinosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7379217/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current characterization methods for cellulose nanomaterials. Chemical Society Reviews, 2018, 47, 2609-2679.	18.7	690
2	Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis. Biomacromolecules, 2013, 14, 1223-1230.	2.6	524
3	Articular cartilage: from formation to tissue engineering. Biomaterials Science, 2016, 4, 734-767.	2.6	231
4	Bioprinting: From Tissue and Organ Development to <i>in Vitro</i> Models. Chemical Reviews, 2020, 120, 10547-10607.	23.0	185
5	A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of Nanobiotechnology, 2016, 14, 78.	4.2	184
6	Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials, 2016, 74, 42-52.	5.7	113
7	Bioprinting Vasculature: Materials, Cells and Emergent Techniques. Materials, 2019, 12, 2701.	1.3	103
8	An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology, 2014, 11, 40.	2.8	91
9	Materials for the Spine: Anatomy, Problems, and Solutions. Materials, 2019, 12, 253.	1.3	83
10	Elucidating the Potential Biological Impact of Cellulose Nanocrystals. Fibers, 2016, 4, 21.	1.8	47
11	Mechanical and shapeâ€memory properties of poly(mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A, 2014, 52, 3123-3133.	2.5	43
12	Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications, 2021, 12, 1031.	5.8	43
13	Tailoring biomaterial scaffolds for osteochondral repair. International Journal of Pharmaceutics, 2017, 523, 476-489.	2.6	42
14	Cellulose nanocrystal driven crystallization of poly(<scp>d</scp> , <scp>l</scp> â€lactide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science, 2015, 132, .	1.3	39
15	Poly(caprolactone- <i>co</i> -trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomaterials Science, 2019, 7, 4984-4989.	2.6	30
16	Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomaterialia, 2020, 102, 192-204.	4.1	29
17	Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers, 2021, 252, 117159.	5.1	28
18	Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials, 2019, 210, 105-115.	5.7	24

#	Article	IF	CITATIONS
19	3D Printed Dualâ€Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 2022, 11, e2101415.	3.9	23
20	Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Materials Today Bio, 2020, 6, 100051.	2.6	19
21	Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 231.	2.0	16
22	Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromolecular Rapid Communications, 2017, 38, 1700186.	2.0	15
23	Strategies to Introduce Topographical and Structural Cues in 3Dâ€Printed Scaffolds and Implications in Tissue Regeneration. Advanced NanoBiomed Research, 2021, 1, 2100068.	1.7	14
24	Hierarchical "As-Electrospun―Self-Assembled Fibrous Scaffolds Deconvolute Impacts of Chemically Defined Extracellular Matrix- and Cell Adhesion-Type Interactions on Stem Cell Haptokinesis. ACS Macro Letters, 2017, 6, 1420-1425.	2.3	9
25	Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation. Materials, 2021, 14, 4360.	1.3	6
26	Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem Cells, 2020, 38, 948-959.	1.4	5
27	Recent advances and future perspectives ofÂporous materials for biomedical applications. Nanomedicine, 2022, 17, 197-200.	1.7	5
28	Phosphatidyl Serine Containing Liposomes on Titania: Phase Behaviour, Bilayer Formation, and Lipid Asymmetry. Biophysical Journal, 2011, 100, 330a.	0.2	0
29	Editorial: Novel Composites and Multi-Material Assembly Approaches for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 680.	2.0	Ο