Richard Nicholas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7378951/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain, 2006, 130, 1089-1104.	3.7	1,142
2	Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain, 2011, 134, 2755-2771.	3.7	685
3	A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology, 2010, 68, 477-493.	2.8	588
4	Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet, The, 2014, 383, 2213-2221.	6.3	361
5	Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain, 2012, 135, 2925-2937.	3.7	310
6	Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of Neurology, 2018, 83, 739-755.	2.8	219
7	The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathologica, 2011, 122, 155-170.	3.9	188
8	COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	3.1	165
9	Stratification and monitoring of natalizumab-associated progressive multifocal leukoencephalopathy risk: recommendations from an expert group. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, jnnp-2015-311100.	0.9	161
10	In Vivo Assessment of Brain White Matter Inflammation in Multiple Sclerosis with ¹⁸ F-PBR111 PET. Journal of Nuclear Medicine, 2014, 55, 1112-1118.	2.8	82
11	Extensive grey matter pathology in the cerebellum in multiple sclerosis is linked to inflammation in the subarachnoid space. Neuropathology and Applied Neurobiology, 2015, 41, 798-813.	1.8	82
12	Meningeal inflammation changes the balance of TNF signalling in cortical grey matter in multiple sclerosis. Journal of Neuroinflammation, 2019, 16, 259.	3.1	79
13	Longitudinal Assessment of Multiple Sclerosis with the Brainâ€Age Paradigm. Annals of Neurology, 2020, 88, 93-105.	2.8	79
14	Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome. Brain, 2015, 138, 110-119.	3.7	76
15	B cell rich meningeal inflammation associates with increased spinal cord pathology in multiple sclerosis. Brain Pathology, 2020, 30, 779-793.	2.1	76
16	Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: An in vivo [(11)C](R)-PK11195-PET pilot study. Neurobiology of Disease, 2014, 65, 203-210.	2.1	66
17	The relationship of age with the clinical phenotype in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1750-1758.	1.4	61
18	¹¹ C-PBR28 and ¹⁸ F-PBR111 Detect White Matter Inflammatory Heterogeneity in Multiple Sclerosis. Journal of Nuclear Medicine, 2017, 58, 1477-1482.	2.8	57

#	Article	IF	CITATIONS
19	Iron homeostasis, complement, and coagulation cascade as CSF signature of cortical lesions in early multiple sclerosis. Annals of Clinical and Translational Neurology, 2019, 6, 2150-2163.	1.7	51
20	Evidence of <i>Clostridium perfringens</i> epsilon toxin associated with multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 653-660.	1.4	46
21	A Comparison of Magnetization Transfer Methods to Assess Brain and Cervical Cord Microstructure in Multiple Sclerosis. Journal of Neuroimaging, 2017, 27, 221-226.	1.0	43
22	Self-diagnosed COVID-19 in people with multiple sclerosis: a community-based cohort of the UK MS Register. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 107-109.	0.9	38
23	Anti-JC virus antibody titres increase over time with natalizumab treatment. Multiple Sclerosis Journal, 2015, 21, 1833-1838.	1.4	37
24	Programmed death 1 is highly expressed on <scp>CD</scp> 8 ⁺ <scp>CD</scp> 57 ⁺ T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein–Barr virus. Immunology, 2017, 152, 660-676.	2.0	37
25	Intrathecal Inflammation in Progressive Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 8217.	1.8	36
26	Lipoprotein markers associated with disability from multiple sclerosis. Scientific Reports, 2018, 8, 17026.	1.6	35
27	COVID-19 is associated with new symptoms of multiple sclerosis that are prevented by disease modifying therapies. Multiple Sclerosis and Related Disorders, 2021, 52, 102939.	0.9	34
28	Temporal lobe cortical pathology and inhibitory GABA interneuron cell loss are associated with seizures in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 25-35.	1.4	32
29	Confirmation of Specific Binding of the 18-kDa Translocator Protein (TSPO) Radioligand [18F]GE-180: a Blocking Study Using XBD173 in Multiple Sclerosis Normal Appearing White and Grey Matter. Molecular Imaging and Biology, 2019, 21, 935-944.	1.3	32
30	Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11020-11027.	3.3	28
31	Hematopoietic mobilization. Neurology, 2015, 84, 1473-1482.	1.5	27
32	Remote Monitoring in the Home Validates Clinical Gait Measures for Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 561.	1.1	26
33	Analysis of ageing-associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions. NeuroImage: Clinical, 2017, 13, 9-15.	1.4	25
34	Defective CD19+CD24 ^{hi} CD38 ^{hi} transitional B-cell function in patients with relapsing-remitting MS. Multiple Sclerosis Journal, 2021, 27, 1187-1197.	1.4	25
35	Translocator positron-emission tomography and magnetic resonance spectroscopic imaging of brain glial cell activation in multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1469-1478.	1.4	23
36	Recovery From COVID-19 in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	3.1	23

#	Article	IF	CITATIONS
37	Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Research, 2016, 1, 10.	0.9	22
38	A realist review of advance care planning for people with multiple sclerosis and their families. PLoS ONE, 2020, 15, e0240815.	1.1	22
39	CSF parvalbumin levels reflect interneuron loss linked with cortical pathology in multiple sclerosis. Annals of Clinical and Translational Neurology, 2021, 8, 534-547.	1.7	19
40	Autologous Hematopoietic Stem Cell Transplantation in Active Multiple Sclerosis. Neurology, 2021, 97, e890-e901.	1.5	19
41	Patient-reported outcomes and survival in multiple sclerosis: A 10-year retrospective cohort study using the Multiple Sclerosis Impact Scale–29. PLoS Medicine, 2017, 14, e1002346.	3.9	19
42	Bladder symptoms in multiple sclerosis: a review of pathophysiology and management. Expert Opinion on Drug Safety, 2010, 9, 905-915.	1.0	18
43	Mental health of people with multiple sclerosis during the COVID-19 outbreak: A prospective cohort and cross-sectional case–control study of the UK MS Register. Multiple Sclerosis Journal, 2022, 28, 1060-1071.	1.4	18
44	A discrete event simulation to model the cost-utility of fingolimod and natalizumab in rapidly evolving severe relapsing-remitting multiple sclerosis in the UK. Journal of Medical Economics, 2017, 20, 474-482.	1.0	17
45	The impact of smoking cessation on multiple sclerosis disease progression. Brain, 2022, 145, 1368-1378.	3.7	16
46	Willingness to receive a COVID-19 vaccine in people with multiple sclerosis – UK MS Register survey. Multiple Sclerosis and Related Disorders, 2021, 55, 103175.	0.9	15
47	"Ependymalâ€in―Gradient of Thalamic Damage in Progressive Multiple Sclerosis. Annals of Neurology, 2022, 92, 670-685.	2.8	15
48	Breaking the cycle. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e562.	3.1	12
49	Cerebrospinal fluid inflammatory profile of cognitive impairment in newly diagnosed multiple sclerosis patients. Multiple Sclerosis Journal, 2022, 28, 768-777.	1.4	12
50	Automated characterisation of microglia in ageing mice using image processing and supervised machine learning algorithms. Scientific Reports, 2022, 12, 1806.	1.6	12
51	Costs and effectiveness of fingolimod versus alemtuzumab in the treatment of highly active relapsing-remitting multiple sclerosis in the UK: re-treatment, discount, and disutility. Journal of Medical Economics, 2017, 20, 962-973.	1.0	11
52	Matching-adjusted indirect treatment comparison of siponimod and other disease modifying treatments in secondary progressive multiple sclerosis. Current Medical Research and Opinion, 2020, 36, 1157-1166.	0.9	11
53	Free serum haemoglobin is associated with brain atrophy in secondary progressive multiple sclerosis. Wellcome Open Research, 0, 1, 10.	0.9	11
54	Progressive Dwindling in Multiple Sclerosis: An Opportunity to Improve Care. PLoS ONE, 2016, 11, e0159210.	1.1	9

#	Article	IF	CITATIONS
55	Peripheral Nerve Dysfunction in Middle-Aged Subjects Born with Thalidomide Embryopathy. PLoS ONE, 2016, 11, e0152902.	1.1	9
56	Mononuclear cell transcriptome changes associated with dimethyl fumarate in MS. Neurology: Neuroimmunology and NeuroInflammation, 2018, 5, e470.	3.1	8
57	A Rapid Electronic Cognitive Assessment Measure for Multiple Sclerosis: Validation of Cognitive Reaction, an Electronic Version of the Symbol Digit Modalities Test. Journal of Medical Internet Research, 2020, 22, e18234.	2.1	8
58	A pragmatic approach to dealing with fingolimod-related lymphopaenia in Europe. Multiple Sclerosis and Related Disorders, 2015, 4, 83-84.	0.9	7
59	Using amyloid PET imaging to diagnose Alzheimer's disease in patients with multiple sclerosis. Journal of Neurology, 2020, 267, 3268-3273.	1.8	7
60	Natalizumab granule cell neuronopathy: FDG-PET in diagnosis and immune reconstitution with G-CSF. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e384.	3.1	5
61	Initiating disease-modifying treatments in multiple sclerosis: Measuring the decision process using decisional conflict and decisional regret scales. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731983300.	0.5	5
62	The importance of considering differences in study and patient characteristics before undertaking indirect treatment comparisons: a case study of siponimod for secondary progressive multiple sclerosis. Current Medical Research and Opinion, 2020, 36, 1145-1156.	0.9	5
63	18F-GE180, a radioligand for the TSPO protein: not ready for clinical trials in multiple sclerosis. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47, 2242-2243.	3.3	4
64	[¹¹ C]PBRâ€28 positron emission tomography in multiple sclerosis: Neuroinflammation or otherwise?. Annals of Neurology, 2017, 81, 323-324.	2.8	3
65	The utility of FDG-PET imaging in distinguishing PML-IRIS from PML in a patient treated with natalizumab. Neurology, 2018, 91, 572-573.	1.5	3
66	Investigation of the correlation between mildly deleterious mtDNA Variations and the clinical progression of multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 53, 103055.	0.9	3
67	Inflammatory Activity on Natalizumab Predicts Short-Term but Not Long-Term Disability in Multiple Sclerosis. PLoS ONE, 2017, 12, e0169546.	1.1	3
68	OPTIMISE: MS study protocol: a pragmatic, prospective observational study to address the need for, and challenges with, real world pharmacovigilance in multiple sclerosis. BMJ Open, 2021, 11, e050176.	0.8	3
69	Worse Physical Disability Is Associated With the Expression of PD-1 on Inflammatory T-Cells in Multiple Sclerosis Patients With Older Appearing Brains. Frontiers in Neurology, 2021, 12, 801097.	1.1	3
70	BG-12 and its potential for the prevention of relapse in multiple sclerosis. Degenerative Neurological and Neuromuscular Disease, 2012, 2, 119.	0.7	2
71	In Response to Letter from Fregonara et al. 2019. Molecular Imaging and Biology, 2020, 22, 13-14.	1.3	2
72	The impact of the face-to-face consultation on decisional conflict in complex decision-making in multiple sclerosis: A pilot study. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2020, 6, 205521732095980.	0.5	2

#	Article	IF	CITATIONS
73	Multiple sclerosis. Clinical Evidence, 2007, 2007, .	0.2	2
74	INFLIXIMAB FOR REFRACTORY NEUROSARCOIDOSIS. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, A21.1-A21.	0.9	0
75	BRAIN VOLUME CHANGE AND DISABILITY IN FINGOLIMOD TRIALS. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, e4.44-e4.	0.9	Ο
76	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		0
77	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		Ο
78	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		0
79	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		Ο
80	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		0
81	A realist review of advance care planning for people with multiple sclerosis and their families. , 2020, 15, e0240815.		0