
Marta Grauso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7378887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Route of Sensitization to Peanut Influences Immune Cell Recruitment at Various Mucosal Sites in Mouse: An Integrative Analysis. Nutrients, 2022, 14, 790.	4.1	4
2	lmmune signatures distinguish frequent from nonâ€frequent exacerbators among children with severe asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2261-2264.	5.7	4
3	A Comprehensive Analysis of Immune Constituents in Blood and Bronchoalveolar Lavage Allows Identification of an Immune Signature of Severe Asthma in Children. Frontiers in Immunology, 2021, 12, 700521.	4.8	10
4	Hyperosmolar environment and intestinal epithelial cells: impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Scientific Reports, 2019, 9, 11360.	3.3	36
5	Dietary Protein Intake Level Modulates Mucosal Healing and Mucosa-Adherent Microbiota in Mouse Model of Colitis. Nutrients, 2019, 11, 514.	4.1	25
6	Mucosal healing progression after acute colitis in mice. World Journal of Gastroenterology, 2019, 25, 3572-3589.	3.3	21
7	Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption. Amino Acids, 2018, 50, 755-763.	2.7	18
8	Changes in the Luminal Environment of the Colonic Epithelial Cells and Physiopathological Consequences. American Journal of Pathology, 2017, 187, 476-486.	3.8	82
9	Epithelial response to a high-protein diet in rat colon. BMC Genomics, 2017, 18, 116.	2.8	27
10	Peroxisome proliferatorâ€activated receptor gamma (PPARγ) regulates lactase expression and activity in the gut. EMBO Molecular Medicine, 2017, 9, 1471-1481.	6.9	16
11	979 Modulating Peroxisome Proliferator-Activated Receptor Gamma (PPARγ): A Potential New Therapeutic Strategy for Lactose Intolerance. Gastroenterology, 2016, 150, S199.	1.3	Ο
12	Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response. Free Radical Biology and Medicine, 2016, 93, 155-164.	2.9	111
13	Bestrophin-Encoded Ca2+-Activated Clâ^' Channels Underlie a Current with Properties Similar to the Native Current in the Moth Spodoptera littoralis Olfactory Receptor Neurons. PLoS ONE, 2012, 7, e52691.	2.5	3
14	Human Genetic Polymorphisms in T1R1 and T1R3 Taste Receptor Subunits Affect Their Function. Chemical Senses, 2011, 36, 527-537.	2.0	58
15	Calcium Activates a Chloride Conductance Likely Involved in Olfactory Receptor Neuron Repolarization in the Moth <i>Spodoptera littoralis</i> . Journal of Neuroscience, 2010, 30, 6323-6333.	3.6	17
16	Molecular Cloning and Expression of a Full-Length cDNA Encoding Acetylcholinesterase in Optic Lobes of the Squid. Journal of Neurochemistry, 2008, 72, 1250-1258.	3.9	23
17	Heavy metals modulate the activity of the purinergic P2X4 receptor. Toxicology and Applied Pharmacology, 2005, 202, 121-131.	2.8	31
18	The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae. Genomics, 2005, 85, 176-187.	2.9	111

Marta Grauso

#	Article	IF	CITATIONS
19	Histidine 140 Plays a Key Role in the Inhibitory Modulation of the P2X4 Nucleotide Receptor by Copper but Not Zinc. Journal of Biological Chemistry, 2003, 278, 36777-36785.	3.4	47
20	Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharmacological Sciences, 2001, 22, 573-580.	8.7	760
21	Four Genes Encode Acetylcholinesterases in the Nematodes Caenorhabditis elegans and Caenorhabditis briggsae. cDNA Sequences, Genomic Structures, Mutations and in vivo Expression. Journal of Molecular Biology, 2000, 300, 727-742.	4.2	76
22	Four acetylcholinesterase genes in the nematode Caenorhabditis elegans. Journal of Physiology (Paris), 1998, 92, 363-367.	2.1	20
23	Existence of four acetylcholinesterase genes in the nematodesCaenorhabditis elegansandCaenorhabditis briggsae1. FEBS Letters, 1998, 424, 279-284.	2.8	53
24	Sequence comparison ofACE-1, the gene encoding acetylcholinesterase of class A, in the two nematodesCaenorhabditis elegansandCaenorhabditis briggsae. DNA Sequence, 1996, 6, 217-227.	0.7	8
25			