List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/737864/publications.pdf

Version: 2024-02-01

		1163117	1372567
11	598	8	10
papers	citations	h-index	g-index
12	12	12	720
12	12	12	729
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide association study reveals novel quantitative trait loci and candidate genes of lint percentage in upland cotton based on the CottonSNP80K array. Theoretical and Applied Genetics, 2022, 135, 2279-2295.	3.6	10
2	Comparative Dynamic Transcriptome Reveals the Delayed Secondary-Cell-Wall Thickening Results in Altered Lint Percentage and Fiber Elongation in a Chromosomal Segment Substitution Line of Cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 2021, 12, 756434.	3.6	2
3	Identification of candidate genes for key fibreâ€related <scp>QTL</scp> s and derivation of favourable alleles in <i>Gossypium hirsutum</i> recombinant inbred lines with <i>G.Âbarbadense</i> introgressions. Plant Biotechnology Journal, 2020, 18, 707-720.	8.3	67
4	Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS ONE, 2019, 14, e0207903.	2.5	23
5	Identification of Introgressed Alleles Conferring High Fiber Quality Derived From Gossypium barbadense L. in Secondary Mapping Populations of G. hirsutum L Frontiers in Plant Science, 2018, 9, 1023.	3.6	23
6	Auxin homeostasis and signaling alterations result in the aberrant phenotype in scl mutant of cotton (Gossypium hirsutum L.). Revista Brasileira De Botanica, 2018, 41, 775-784.	1.3	O
7	The Variation in the Rhizosphere Microbiome of Cotton with Soil Type, Genotype and Developmental Stage. Scientific Reports, 2017, 7, 3940.	3.3	205
8	Phenotypic variation analysis and QTL mapping for cotton (Gossypium hirsutum L.) fiber quality grown in different cotton-producing regions. Euphytica, 2016, 211, 169-183.	1.2	26
9	Genetic dissection of the introgressive genomic components from Gossypium barbadense L. that contribute to improved fiber quality in Gossypium hirsutum L Molecular Breeding, 2013, 32, 547-562.	2.1	74
10	Genetic effects of introgression genomic components from Sea Island cotton (Gossypium barbadense) Tj ETQq(0 0 rgBT 1.2	/Overlock 10
11	Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theoretical and Applied Genetics, 2010, 120, 665-678.	3.6	125