
Gerard I Evan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7378001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of apoptosis in fibroblasts by c-myc protein. Cell, 1992, 69, 119-128.	13.5	2,949
2	Intrinsic tumour suppression. Nature, 2004, 432, 307-315.	13.7	1,158
3	Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature, 1997, 385, 544-548.	13.7	1,114
4	Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature, 1992, 359, 554-556.	13.7	749
5	Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455, 679-683.	13.7	706
6	Suppression of Myc-Induced Apoptosis in β Cells Exposes Multiple Oncogenic Properties of Myc and Triggers Carcinogenic Progression. Cell, 2002, 109, 321-334.	13.5	594
7	Reversible Activation of c-Myc in Skin. Molecular Cell, 1999, 3, 565-577.	4.5	456
8	Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature, 1992, 359, 423-426.	13.7	455
9	Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nature Medicine, 2007, 13, 1211-1218.	15.2	449
10	Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell, 2017, 171, 1301-1315.e14.	13.5	393
11	Distinct Thresholds Govern Myc's Biological Output In Vivo. Cancer Cell, 2008, 14, 447-457.	7.7	390
12	Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes and Development, 2013, 27, 504-513.	2.7	250
13	Temporal dissection of p53 function in vitro and in vivo. Nature Genetics, 2005, 37, 718-726.	9.4	174
14	The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes and Development, 2006, 20, 2527-2538.	2.7	165
15	Endogenous Myc maintains the tumor microenvironment. Genes and Development, 2011, 25, 907-916.	2.7	162
16	c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene, 2003, 22, 5707-5711.	2.6	159
17	MYC, a downstream target of BRD-NUT, is necessary and sufficient for the blockade of differentiation in NUT midline carcinoma. Oncogene, 2014, 33, 1736-1742.	2.6	155
18	Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis. Nature Communications, 2014, 5, 4632.	5.8	144

Gerard I Evan

#	Article	IF	CITATIONS
19	A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer. Cancer Cell, 2015, 28, 743-757.	7.7	122
20	MYC Instructs and Maintains Pancreatic Adenocarcinoma Phenotype. Cancer Discovery, 2020, 10, 588-607.	7.7	121
21	Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discovery, 2019, 9, 1268-1287.	7.7	119
22	Cellular senescence: hot or what?. Current Opinion in Genetics and Development, 2009, 19, 25-31.	1.5	103
23	Ibrutinib Exerts Potent Antifibrotic and Antitumor Activities in Mouse Models of Pancreatic Adenocarcinoma. Cancer Research, 2015, 75, 1675-1681.	0.4	95
24	A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. Nature Genetics, 2017, 49, 341-348.	9.4	75
25	Reversible Kinetic Analysis of Myc Targets In vivo Provides Novel Insights into Myc-Mediated Tumorigenesis. Cancer Research, 2006, 66, 4591-4601.	0.4	71
26	The opposing roles of the Akt and c-Myc signalling pathways in survival from CD95-mediated apoptosis. Oncogene, 1998, 17, 2811-2818.	2.6	70
27	Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation. Developmental Cell, 2017, 41, 274-286.e5.	3.1	67
28	Myc Expression Drives Aberrant Lipid Metabolism in Lung Cancer. Cancer Research, 2016, 76, 4608-4618.	0.4	58
29	Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors. Cancer Research, 2016, 76, 3463-3472.	0.4	54
30	BCL11A interacts with SOX2 to control the expression of epigenetic regulators in lung squamous carcinoma. Nature Communications, 2018, 9, 3327.	5.8	54
31	Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycERTM mice. Oncogene, 2000, 19, 773-782.	2.6	41
32	Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nature Communications, 2020, 11, 1827.	5.8	38
33	Finding cancer's weakest link. Oncotarget, 2011, 2, 1307-1313.	0.8	37
34	Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clinical Cancer Research, 2017, 23, 1647-1655.	3.2	36
35	Taking a Back Door to Target Myc. Science, 2012, 335, 293-294.	6.0	30
36	CDK2 Transcriptional Repression Is an Essential Effector in p53-Dependent Cellular Senescence—Implications for Therapeutic Intervention. Molecular Cancer Research, 2015, 13, 29-40.	1.5	24

GERARD I EVAN

#	Article	IF	CITATIONS
37	p53 Restoration in Induction and Maintenance of Senescence: Differential Effects in Premalignant and Malignant Tumor Cells. Molecular and Cellular Biology, 2016, 36, 438-451.	1.1	16
38	Heterogeneity of Myc expression in breast cancer exposes pharmacological vulnerabilities revealed through executable mechanistic modeling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22399-22408.	3.3	15
39	Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer. Journal of Lipid Research, 2020, 61, 1390-1399.	2.0	14
40	Deficiency for the Cysteine Protease Cathepsin L Impairs Myc-Induced Tumorigenesis in a Mouse Model of Pancreatic Neuroendocrine Cancer. PLoS ONE, 2015, 10, e0120348.	1.1	13
41	The Estrogen Receptor Fusion System in Mouse Models: A Reversible Switch. Cold Spring Harbor Protocols, 2015, 2015, pdb.top069815.	0.2	12
42	c-Myc and E1A induced cellular sensitivity to activated NK cells involves cytotoxic granules as death effectors. Oncogene, 1999, 18, 2181-2188.	2.6	11
43	Synthetic peptides in biochemical research. Molecular Biotechnology, 1995, 4, 73-86.	1.3	6
44	Determination of the physiological and pathological roles of E2F3 in adult tissues. Scientific Reports, 2017, 7, 9932.	1.6	5
45	Getting One's Fak Straight. Developmental Cell, 2010, 19, 185-186.	3.1	4
46	The Wnt signaling receptor Fzd9 is essential for Myc-driven tumorigenesis in pancreatic islets. Life Science Alliance, 2021, 4, e201900490.	1.3	4
47	GTPγS inhibits early c-mycprotein accumulation but not DNA synthesis in Swiss 3T3 fibroblasts. FEBS Letters, 1990, 273, 243-247.	1.3	2
48	CLONING OF DRICE, A DROSOPHILA MELANOGASTER ICE/CED-3 PROTEASE HOMOLOGUE. Biochemical Society Transactions, 1996, 24, 601S-601S.	1.6	0