Na Sui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377461/publications.pdf Version: 2024-02-01

NA SIII

#	Article	IF	CITATIONS
1	C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. Frontiers in Plant Science, 2020, 11, 115.	1.7	212
2	Photosynthetic Regulation Under Salt Stress and Salt-Tolerance Mechanism of Sweet Sorghum. Frontiers in Plant Science, 2019, 10, 1722.	1.7	179
3	Antioxidants and unsaturated fatty acids are involved in salt tolerance in peanut. Acta Physiologiae Plantarum, 2017, 39, 1.	1.0	153
4	Transcriptional regulation of bHLH during plant response to stress. Biochemical and Biophysical Research Communications, 2018, 503, 397-401.	1.0	148
5	Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 2015, 16, 534.	1.2	144
6	Research advances of MYB transcription factors in plant stress resistance and breeding. Plant Signaling and Behavior, 2019, 14, 1613131.	1.2	142
7	Overexpression of Glycerol-3-Phosphate Acyltransferase from Suaeda salsa Improves Salt Tolerance in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1337.	1.7	137
8	The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Molecular Biology, 2014, 86, 237-253.	2.0	126
9	Transcriptomic and Physiological Evidence for the Relationship between Unsaturated Fatty Acid and Salt Stress in Peanut. Frontiers in Plant Science, 2018, 9, 7.	1.7	121
10	Salt-induced photoinhibition of PSII is alleviated in halophyte Thellungiella halophila by increases of unsaturated fatty acids in membrane lipids. Acta Physiologiae Plantarum, 2014, 36, 983-992.	1.0	113
11	Overexpression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta, 2007, 226, 1097-1108.	1.6	105
12	Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 2021, 40, 271-282.	2.8	98
13	The role of the seed coat in adaptation of dimorphic seeds of the euhalophyte <i>Suaeda salsa</i> to salinity. Plant Species Biology, 2017, 32, 107-114.	0.6	95
14	Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Frontiers in Plant Science, 2018, 9, 217.	1.7	81
15	Transcription Profiles of Genes Related to Hormonal Regulations Under Salt Stress in Sweet Sorghum. Plant Molecular Biology Reporter, 2017, 35, 586-599.	1.0	73
16	Mechanisms of salt tolerance in halophytes: current understanding and recent advances. Open Life Sciences, 2018, 13, 149-154.	0.6	70
17	Arabidopsis ZINC FINGER PROTEIN1 Acts Downstream of GL2 to Repress Root Hair Initiation and Elongation by Directly Suppressing bHLH Genes. Plant Cell, 2020, 32, 206-225.	3.1	67
18	<i>TaD27â€B</i> gene controls the tiller number in hexaploid wheat. Plant Biotechnology Journal, 2020, 18, 513-525.	4.1	64

NA SUI

#	Article	IF	CITATIONS
19	Regulation mechanism of long non-coding RNA in plant response to stress. Biochemical and Biophysical Research Communications, 2018, 503, 402-407.	1.0	63
20	Transcriptomic profiling revealed genes involved in response to cold stress in maize. Functional Plant Biology, 2019, 46, 830.	1.1	63
21	Nitrogen increases drought tolerance in maize seedlings. Functional Plant Biology, 2019, 46, 350.	1.1	61
22	Changes in endogenous hormones and seed-coat phenolics during seed storage of two Suaeda salsa populations. Australian Journal of Botany, 2016, 64, 325.	0.3	60
23	Advances in the profiling of N6-methyladenosine (m6A) modifications. Biotechnology Advances, 2020, 45, 107656.	6.0	55
24	Physiological changes in fruit ripening caused by overexpression of tomato SIAN2, an R2R3-MYB factor. Plant Physiology and Biochemistry, 2015, 89, 24-30.	2.8	52
25	Transcriptome analysis of sweet Sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant and Soil, 2018, 430, 423-439.	1.8	52
26	Regulation mechanism of microRNA in plant response to abiotic stress and breeding. Molecular Biology Reports, 2019, 46, 1447-1457.	1.0	52
27	Analysis of N6-methyladenosine reveals a new important mechanism regulating the salt tolerance of sweet sorghum. Plant Science, 2021, 304, 110801.	1.7	52
28	Salinity improves chilling resistance in Suaeda salsa. Acta Physiologiae Plantarum, 2014, 36, 1823-1830.	1.0	49
29	AtSIZ1 improves salt tolerance by maintaining ionic homeostasis and osmotic balance in Arabidopsis. Plant Science, 2019, 285, 55-67.	1.7	47
30	Roles of brassinosteroids in plant growth and abiotic stress response. Plant Growth Regulation, 2021, 93, 29-38.	1.8	47
31	Comparative Transcriptome Analysis Reveals New IncRNAs Responding to Salt Stress in Sweet Sorghum. Frontiers in Bioengineering and Biotechnology, 2020, 8, 331.	2.0	46
32	Roles of malic enzymes in plant development and stress responses. Plant Signaling and Behavior, 2019, 14, e1644596.	1.2	43
33	Deficiency of phytochrome B alleviates chillingâ€induced photoinhibition in rice. American Journal of Botany, 2013, 100, 1860-1870.	0.8	42
34	The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Molecular Biology, 2020, 102, 603-614.	2.0	41
35	ZmMYB31, a R2R3-MYB transcription factor in maize, positively regulates the expression of CBF genes and enhances resistance to chilling and oxidative stress. Molecular Biology Reports, 2019, 46, 3937-3944.	1.0	40
36	Responses of Membranes and the Photosynthetic Apparatus to Salt Stress in Cyanobacteria. Frontiers in Plant Science, 2020, 11, 713.	1.7	40

NA SUI

#	Article	lF	CITATIONS
37	TaMYB86B encodes a R2R3-type MYB transcription factor and enhances salt tolerance in wheat. Plant Science, 2020, 300, 110624.	1.7	32
38	Antisense-mediated depletion of tomato chloroplast glycerol-3-phosphate acyltransferase affects male fertility and increases thermal tolerance. Physiologia Plantarum, 2007, 130, 301-314.	2.6	30
39	Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development. Frontiers in Plant Science, 2017, 8, 1609.	1.7	30
40	WHIRLY1 Regulates HSP21.5A Expression to Promote Thermotolerance in Tomato. Plant and Cell Physiology, 2020, 61, 169-177.	1.5	30
41	Functional Implications of Active N6-Methyladenosine in Plants. Frontiers in Cell and Developmental Biology, 2020, 8, 291.	1.8	30
42	Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Plant Physiology and Biochemistry, 2020, 149, 11-26.	2.8	30
43	Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. Plant Physiology and Biochemistry, 2019, 135, 167-173.	2.8	28
44	Genetic, hormonal, and environmental control of tillering in wheat. Crop Journal, 2021, 9, 986-991.	2.3	27
45	NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of <i>Arabidopsis thaliana</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 5992-6002.	2.4	26
46	The roles of chloroplast membrane lipids in abiotic stress responses. Plant Signaling and Behavior, 2020, 15, 1807152.	1.2	23
47	m6A Editing: New Tool to Improve Crop Quality?. Trends in Plant Science, 2020, 25, 859-867.	4.3	23
48	Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sacââ,¬â€œpollen tube interaction. Frontiers in Plant Science, 2014, 5, 702.	1.7	20
49	SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. Theoretical and Applied Genetics, 2022, 135, 201-216.	1.8	20
50	Biological Functions of Strigolactones and Their Crosstalk With Other Phytohormones. Frontiers in Plant Science, 2022, 13, 821563.	1.7	18
51	Overexpression of CCCH zinc finger protein gene delays flowering time and enhances salt tolerance in Arabidopsis by increasing fatty acid unsaturation. Acta Physiologiae Plantarum, 2018, 40, 1.	1.0	16
52	Photosynthesis in Phytoplankton: Insights from the Newly Discovered Biological Inorganic Carbon Pumps. Molecular Plant, 2020, 13, 949-951.	3.9	15
53	SIWHY2 interacts with SIRECA2 to maintain mitochondrial function under drought stress in tomato. Plant Science, 2020, 301, 110674.	1.7	12
54	Exogenous calcium application enhances salt tolerance of sweet sorghum seedlings. Journal of Agronomy and Crop Science, 2022, 208, 441-453.	1.7	12

NA SUI

#	Article	IF	CITATIONS
55	An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biology, 2022, 19, 897-907.	1.5	7
56	SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling. Theoretical and Applied Genetics, 2022, 135, 2609-2625.	1.8	7
57	The Cultivation Technique for Increasing the Stalk Sugar Content of Energy Plant Sweet Sorghum in Yellow River Delta. Advanced Materials Research, 0, 724-725, 437-442.	0.3	5
58	Responses of Unsaturated Fatty Acid in Membrane Lipid and Antioxidant Enzymes to Chilling Stress in Sweet Sorghum (Sorghum bicolor (L.) Moench) Seedling. Journal of Agricultural Science, 2016, 8, 71.	0.1	5
59	Interactions between the soil bacterial community assembly and gene regulation in saltâ€sensitive and saltâ€tolerant sweet sorghum cultivars. Land Degradation and Development, 2022, 33, 2985-2997.	1.8	5
60	Identification and Transcriptome Analysis of Genes Related to Membrane Lipid Regulation in Sweet Sorghum under Salt Stress. International Journal of Molecular Sciences, 2022, 23, 5465.	1.8	5
61	Single-cell profiling lights different cell trajectories in plants. ABIOTECH, 2021, 2, 64-78.	1.8	2
62	Genetic analysis of a novel fiber developmental mutant ligon-lintless-Sd (LiSd) in Gossypium hirsutum L Genetic Resources and Crop Evolution, 2019, 66, 1119-1127.	0.8	1