List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nature Communications, 2020, 11, 4066.	5.8	337
2	CNT-assembled dodecahedra core@nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy, 2019, 55, 82-92.	8.2	185
3	Efficient band structure tuning, charge separation, and visible-light response in ZrS ₂ -based van der Waals heterostructures. Energy and Environmental Science, 2016, 9, 841-849.	15.6	161
4	Lattice‣train Engineering of Homogeneous NiS _{0.5} Se _{0.5} Core–Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	11.1	158
5	Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries. Journal of Materials Chemistry A, 2017, 5, 2328-2338.	5.2	134
6	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	7.2	127
7	Ketjen Black-MnO Composite Coated Separator For High Performance Rechargeable Lithium-Sulfur Battery. Electrochimica Acta, 2016, 192, 346-356.	2.6	122
8	Mechanism on the Improved Performance of Lithium Sulfur Batteries with MXene-Based Additives. Journal of Physical Chemistry C, 2017, 121, 11047-11054.	1.5	118
9	Simultaneous Manipulation of Oâ€Doping and Metal Vacancy in Atomically Thin Zn ₁₀ In ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie - International Edition, 2018, 57, 16882-16887.	7.2	109
10	Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nature Communications, 2021, 12, 3102.	5.8	103
11	Rational Design and Strain Engineering of Nanoporous Boron Nitride Nanosheet Membranes for Water Desalination. Journal of Physical Chemistry C, 2017, 121, 22105-22113.	1.5	102
12	Atomic Vacancies Control of Pdâ€Based Catalysts for Enhanced Electrochemical Performance. Advanced Materials, 2018, 30, 1704171.	11.1	102
13	Boron-substituted graphyne as a versatile material with high storage capacities of Li and H2: a multiscale theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 16120.	1.3	96
14	Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution. Carbon, 2016, 110, 207-214.	5.4	92
15	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Applied Materials & Interfaces, 2019, 11, 4915-4921.	4.0	84
16	Prominently Improved Hydrogen Purification and Dispersive Metal Binding for Hydrogen Storage by Substitutional Doping in Porous Graphene. Journal of Physical Chemistry C, 2012, 116, 21291-21296.	1.5	76
17	Hexagonal Boron Nitride with Designed Nanopores as a High-Efficiency Membrane for Separating Gaseous Hydrogen from Methane. Journal of Physical Chemistry C, 2015, 119, 19826-19831.	1.5	71
18	Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes. Applied Catalysis B: Environmental, 2019, 246, 202-210.	10.8	71

#	Article	IF	CITATIONS
19	Graphdiyne as a High-Efficiency Membrane for Separating Oxygen from Harmful Gases: A First-Principles Study. ACS Applied Materials & Interfaces, 2016, 8, 28166-28170.	4.0	68
20	Valence Engineering <i>via</i> Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano, 2019, 13, 11469-11476.	7.3	68
21	Synergistic Interfaceâ€Assisted Electrode–Electrolyte Coupling Toward Advanced Charge Storage. Advanced Materials, 2020, 32, e2005344.	11.1	64
22	Prototypical Study of Double-Layered Cathodes for Aqueous Rechargeable Static Zn–I ₂ Batteries. Nano Letters, 2021, 21, 4129-4135.	4.5	62
23	Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chemical Communications, 2011, 47, 7698.	2.2	60
24	Hierarchical iridium-based multimetallic alloy with double-core-shell architecture for efficient overall water splitting. Science China Materials, 2020, 63, 249-257.	3.5	59
25	Separator modified by Ketjen black for enhanced electrochemical performance of lithium–sulfur batteries. RSC Advances, 2016, 6, 13680-13685.	1.7	54
26	Threeâ€Phase Boundary in Crossâ€Coupled Microâ€Mesoporous Networks Enabling 3Dâ€Printed and Ionogelâ€Based Quasiâ€Solidâ€State Microâ€Supercapacitors. Advanced Materials, 2020, 32, e2002474.	11.1	54
27	Highâ€Polarity Fluoroalkyl Ether Electrolyte Enables Solvationâ€Free Li ⁺ Transfer for Highâ€Rate Lithium Metal Batteries. Advanced Science, 2022, 9, e2104699.	5.6	54
28	Mg0.6Ni0.4O hollow nanofibers prepared by electrospinning as additive for improving electrochemical performance of lithium–sulfur batteries. Journal of Alloys and Compounds, 2015, 650, 351-356.	2.8	52
29	A promising monolayer membrane for oxygen separation from harmful gases: nitrogen-substituted polyphenylene. Nanoscale, 2014, 6, 9960-9964.	2.8	51
30	Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. Journal of Hazardous Materials, 2019, 366, 659-668.	6.5	45
31	Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries. Journal of Energy Chemistry, 2021, 57, 428-435.	7.1	45
32	Improved Transport Properties and Novel Li Diffusion Dynamics in van der Waals C ₂ N/Graphene Heterostructure as Anode Materials for Lithium-Ion Batteries: A First-Principles Investigation. Journal of Physical Chemistry C, 2019, 123, 3353-3367.	1.5	43
33	Tuning the Metal Electronic Structure of Anchored Cobalt Phthalocyanine via Dualâ€Regulator for Efficient CO ₂ Electroreduction and Zn–CO ₂ Batteries. Advanced Functional Materials, 2022, 32, .	7.8	43
34	Hollow spherical Lanthanum oxide coated separator for high electrochemical performance lithium-sulfur batteries. Materials Research Bulletin, 2017, 94, 104-112.	2.7	38
35	Catenated metal-organic frameworks: Promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. International Journal of Hydrogen Energy, 2013, 38, 9811-9818.	3.8	37
36	Theoretical study of H2 adsorption on metal-doped graphene sheets with nitrogen-substituted defects. International Journal of Hydrogen Energy, 2015, 40, 14154-14162.	3.8	37

#	Article	IF	CITATIONS
37	Zn-MOF derived micro/meso porous carbon nanorod for high performance lithium–sulfur battery. RSC Advances, 2016, 6, 94629-94635.	1.7	35
38	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	8.2	35
39	Bilayer graphene with ripples for reverse osmosis desalination. Carbon, 2018, 136, 21-27.	5.4	34
40	Electronic properties and hydrogen storage application of designed porous nanotubes from a polyphenylene network. International Journal of Hydrogen Energy, 2014, 39, 18966-18975.	3.8	33
41	Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6362-6369.	3.3	33
42	Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. ACS Nano, 2021, 15, 7790-7798.	7.3	33
43	Dualâ€Metal Sites Boosting Polarization of Nitrogen Molecules for Efficient Nitrogen Photofixation. Advanced Science, 2021, 8, 2100302.	5.6	32
44	High rate lithium-sulfur batteries enabled by mesoporous TiO2 nanotubes prepared by electrospinning. Materials Research Bulletin, 2017, 95, 402-408.	2.7	30
45	Interfacial competition between a borophene-based cathode and electrolyte for the multiple-sulfide immobilization of a lithium sulfur battery. Journal of Materials Chemistry A, 2019, 7, 7092-7098.	5.2	30
46	Nickel fibers/sulfur composites cathode with enhanced electrochemical performance for rechargeable lithium-sulfur batteries. Electrochimica Acta, 2015, 176, 442-447.	2.6	28
47	N-substituted defective graphene sheets: promising electrode materials for Na-ion batteries. RSC Advances, 2015, 5, 17042-17048.	1.7	27
48	CeO ₂ nanodots decorated ketjen black for high performance lithium–sulfur batteries. RSC Advances, 2016, 6, 111190-111196.	1.7	27
49	Reversing the Nucleophilicity of Active Sites in CoP ₂ Enables Exceptional Hydrogen Evolution Catalysis. Small, 2022, 18, e2106870.	5.2	27
50	Nanoporous MoS ₂ monolayer as a promising membrane for purifying hydrogen and enriching methane. Journal of Physics Condensed Matter, 2017, 29, 375201.	0.7	26
51	Dual transition-metal atoms doping: an effective route to promote the ORR and OER activity on MoTe ₂ . New Journal of Chemistry, 2021, 45, 5589-5595.	1.4	26
52	Separator modified by Y2O3 nanoparticles-Ketjen Black hybrid and its application in lithium-sulfur battery. Journal of Solid State Electrochemistry, 2017, 21, 3229-3236.	1.2	25
53	Ca-Embedded C ₂ N: an efficient adsorbent for CO ₂ capture. Physical Chemistry Chemical Physics, 2017, 19, 28323-28329.	1.3	25
54	Gradient phosphorus-doping engineering and superficial amorphous reconstruction in NiFe ₂ O ₄ nanoarrays to enhance the oxygen evolution electrocatalysis. Nanoscale, 2020, 12, 10977-10986.	2.8	24

#	Article	IF	CITATIONS
55	Highly Active and CO-Tolerant Trimetallic NiPtPd Hollow Nanocrystals as Electrocatalysts for Methanol Electro-oxidation Reaction. ACS Applied Energy Materials, 2019, 2, 4763-4773.	2.5	23
56	Separator modified with Ketjenblack-In2O3 nanoparticles for long cycle-life lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2019, 23, 645-656.	1.2	22
57	Insight into tuning the surface and bulk microstructure of perovskite catalyst through control of cation non-stoichiometry. Journal of Catalysis, 2020, 381, 408-414.	3.1	22
58	Orbital-regulated interfacial electronic coupling endows Ni3N with superior catalytic surface for hydrogen evolution reaction. Science China Chemistry, 2020, 63, 1563-1569.	4.2	22
59	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation. Advanced Functional Materials, 2022, 32, .	7.8	22
60	Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage. Applied Physics Letters, 2015, 106, .	1.5	21
61	Mesoporous TiO2 nanosheet with a large amount of exposed {001} facets as sulfur host for high-performance lithium–sulfur batteries. Journal of Solid State Electrochemistry, 2016, 20, 2161-2168.	1.2	21
62	Non-metallic electronic regulation in CuCo oxy-/thio-spinel as advanced oxygen evolution electrocatalysts. Science China Chemistry, 2021, 64, 101-108.	4.2	21
63	Tunable band gap and hydrogen adsorption property of a two-dimensional porous polymer by nitrogen substitution. Physical Chemistry Chemical Physics, 2013, 15, 666-670.	1.3	20
64	Support Amorphization Engineering Regulates Single-Atom Ru as an Electron Pump for Nitrogen Photofixation. ACS Catalysis, 2022, 12, 8139-8146.	5.5	20
65	Simultaneous Manipulation of Oâ€Doping and Metal Vacancy in Atomically Thin Zn ₁₀ In ₁₆ S ₃₄ Nanosheet Arrays toward Improved Photoelectrochemical Performance. Angewandte Chemie, 2018, 130, 17124-17129.	1.6	19
66	Immobilisation of sulphur on cathodes of lithium–sulphur batteries <i>via</i> B-doped atomic-layer carbon materials. Physical Chemistry Chemical Physics, 2019, 21, 10895-10901.	1.3	19
67	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	1.6	18
68	Behavior of gold-enhanced electrocatalytic performance of NiPtAu hollow nanocrystals for alkaline methanol oxidation. Science China Materials, 2021, 64, 611-620.	3.5	18
69	A separator modified by spray-dried hollow spherical cerium oxide and its application in lithium sulfur batteries. RSC Advances, 2016, 6, 114989-114996.	1.7	16
70	Accelerating water dissociation kinetics of Ni3N by tuning interfacial orbital coupling. Nano Research, 2021, 14, 3458-3465.	5.8	16
71	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	2.5	15
72	Fabrication and Characterization of Non-Woven Carbon Nanofibers as Functional Interlayers for Rechargeable Lithium Sulfur Battery. Journal of Nanoscience and Nanotechnology, 2017, 17, 1857-1862.	0.9	14

#	Article	IF	CITATIONS
73	Tailoring the d-Band Center of Double-Perovskite LaCo <i>_x</i> Ni _{1–<i>x</i>} O ₃ Nanorods for High Activity in Artificial N ₂ Fixation. ACS Applied Materials & Interfaces, 2021, 13, 13347-13353.	4.0	14
74	Synergistic interaction of Nb atoms anchored on g-C3N4 and H+ promoting high-efficiency nitrogen reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1139-1147.	6.9	14
75	First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI=S, Se, and Te) quaternary semiconductors. AIP Advances, 2015, 5, .	0.6	13
76	Influences of lithium doping and fullerene impregnation on hydrogen storage in metal organic frameworks. Molecular Simulation, 2013, 39, 968-974.	0.9	12
77	Regulating the electronic properties of MoSe ₂ to improve its CO ₂ electrocatalytic reduction performance <i>via</i> atomic doping. New Journal of Chemistry, 2021, 45, 5350-5356.	1.4	12
78	Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Reports Physical Science, 2022, 3, 100788.	2.8	12
79	Improving C–N–FeO _{<i>x</i>} Oxygen Evolution Electrocatalysts through Hydroxyl-Modulated Local Coordination Environment. ACS Catalysis, 2022, 12, 7443-7452.	5.5	12
80	Synthesis of Tellurium Fusiform Nanoarchitectures by Controlled Living Nanowire Modification. Journal of Physical Chemistry C, 2016, 120, 12305-12312.	1.5	9
81	Surface Atomic Configurations of MnO ₂ Regulating the Immobilization of Sulfides in Lithium Sulfur Battery. Journal of Physical Chemistry C, 2020, 124, 5565-5573.	1.5	9
82	Electronic structures and transport properties of SnS–SnSe nanoribbon lateral heterostructures. Physical Chemistry Chemical Physics, 2019, 21, 9296-9301.	1.3	8
83	Spinel copper–iron-oxide magnetic nanoparticles with cooperative Cu(<scp>i</scp>) and Cu(<scp>ii</scp>) sites for enhancing the catalytic transformation of 1,2-propanediol to lactic acid under anaerobic conditions. Catalysis Science and Technology, 2020, 10, 8094-8107.	2.1	8
84	<i>In situ</i> coating amorphous boride on ternary pyrite-type boron sulfide for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12283-12290.	5.2	8
85	Selfâ€Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Selfâ€Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating. Small, 2018, 14, 1702072.	5.2	5
86	Self-reconstruction mediates isolated Pt tailored nanoframes for highly efficient catalysis. Journal of Materials Chemistry A, 2021, 9, 22501-22508.	5.2	5
87	Modulating depth of 1,2-propanediol oxidation over La(III) doped MCM-41 supported binary Pd and Bi nanoparticles for selective production of C3 carbonyl compounds. Applied Surface Science, 2021, 554, 149528.	3.1	2
88	CO ₂ electrochemical reduction boosted by the regulated electronic properties of metalloporphyrins through tuning an atomic environment. New Journal of Chemistry, 2021, 45, 10664-10671.	1.4	2
89	Aqueous Solution Synthesis of Sulfur-Ketjen Black Cathode Materials Without Heat Treatment for High-Performance Li-S Batteries. Science of Advanced Materials, 2016, 8, 1417-1425.	0.1	1
90	Enhancement of Carbon Dioxide Adsorption by Lithium Decorating and Fullerene Encapsulating in Metal-Organic Frameworks. Advanced Materials Research, 0, 773, 927-931.	0.3	0

#	Article	IF	CITATIONS
91	Tuning the Interaction between Ruthenium Single Atoms and the Second Coordination Sphere for Efficient Nitrogen Photofixation (Adv. Funct. Mater. 12/2022). Advanced Functional Materials, 2022, 32,	7.8	О