Javier SÃ;nchez-Nieves

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377089/publications.pdf

Version: 2024-02-01

279487 329751 74 1,735 23 37 citations h-index g-index papers 74 74 74 1637 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In vivo delivery of siRNA to the brain by carbosilane dendrimer. Journal of Controlled Release, 2015, 200, 60-70.	4.8	98
2	Oxo and imido/imido exchange and Câ€"H activation reactions based on pentamethylcylopentadienyl imido tantalum complexes. Journal of Organometallic Chemistry, 2000, 597, 61-68.	0.8	85
3	Carbosilane cationic dendrimers synthesized by thiol–ene click chemistry and their use as antibacterial agents. RSC Advances, 2014, 4, 1256-1265.	1.7	73
4	Insertion of CO and CNR into Tantalumâ^'Methyl Bonds of Imido(pentamethylcyclopentadienyl)tantalum Complexes. X-ray Crystal Structures of $[TaCp^*(NR)Me\{\hat{i}-2-C(Me)NR\}]$ and $[TaCp^*Cl(O)\{\hat{i}-2-C(Me)NR\}]$ (R =) Tj ET	¯Qq ı 0ı0 0 rş	gBT6#Overlock
5	A Thermally Stable and Sterically Unprotected Terminal Electrophilic Phosphinidene Complex of Cobalt and Its Conversion to an $\hat{l}\cdot 1$ -Phosphirene. Journal of the American Chemical Society, 2003, 125, 2404-2405.	6.6	63
6	Hyperbranched polymers versus dendrimers containing a carbosilane framework and terminal ammonium groups as antimicrobial agents. Organic and Biomolecular Chemistry, 2011, 9, 5238.	1.5	59
7	Novel Water-Soluble Mucoadhesive Carbosilane Dendrimers for Ocular Administration. Molecular Pharmaceutics, 2016, 13, 2966-2976.	2.3	50
8	Insertion of Isocyanides into Tantalumâ^'Methyl and Tantalumâ^'Amido Bonds. Organometallics, 2000, 19, 3161-3169.	1.1	48
9	Thiol-Ene Synthesis of Cationic Carbosilane Dendrons: a New Family of Synthons. Organometallics, 2013, 32, 1789-1796.	1.1	47
10	Synthesis, structure and molecular modelling of anionic carbosilane dendrimers. Dalton Transactions, 2012, 41, 12733.	1.6	45
11	Structure–activity relationship study of cationic carbosilane dendritic systems as antibacterial agents. RSC Advances, 2016, 6, 7022-7033.	1.7	45
12	Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. International Journal of Pharmaceutics, 2017, 528, 55-61.	2.6	45
13	Mesoporous Silica Nanoparticles Decorated with Carbosilane Dendrons as New Nonâ€viral Oligonucleotide Delivery Carriers. Chemistry - A European Journal, 2015, 21, 15651-15666.	1.7	44
14	Synthesis of carbosilane dendrons and dendrimers derived from 1,3,5-trihydroxybenzene. Tetrahedron, 2010, 66, 9203-9213.	1.0	43
15	Novel â€~SiC' carbosilane dendrimers as carriers for anti-HIV nucleic acids: Studies on complexation and interaction with blood cells. Colloids and Surfaces B: Biointerfaces, 2013, 109, 183-189.	2.5	40
16	Dendronized Anionic Gold Nanoparticles: Synthesis, Characterization, and Antiviral Activity. Chemistry - A European Journal, 2016, 22, 2987-2999.	1.7	40
17	In vitro anti- Acanthamoeba synergistic effect of chlorhexidine and cationic carbosilane dendrimers against both trophozoite and cyst forms. International Journal of Pharmaceutics, 2016, 509, 1-7.	2.6	37
18	Amphiphilic Cationic Carbosilane–PEG Dendrimers: Synthesis and Applications in Gene Therapy. European Journal of Medicinal Chemistry, 2014, 76, 43-52.	2.6	35

#	Article	IF	Citations
19	Reactivity of Terminal Electrophilic Phosphinidene Complexes: Synthesis of the First Rhenium Phosphinidene, [Re(CO)5(η1-PNiPr2)][AlCl4], and Novel Reactions with Azobenzene. Organometallics, 2005, 24, 2023-2026.	1.1	33
20	PEGylated AgNP covered with cationic carbosilane dendrons to enhance antibacterial and inhibition of biofilm properties. International Journal of Pharmaceutics, 2019, 569, 118591.	2.6	28
21	Trapping Unstable Terminal Taâ [^] O Multiple Bonds of Monocyclopentadienyl Tantalum Complexes with a Lewis Acid. Organometallics, 2005, 24, 2004-2007.	1.1	27
22	Gold nanoparticles stabilized by cationic carbosilane dendrons: synthesis and biological properties. Dalton Transactions, 2017, 46, 8736-8745.	1.6	25
23	Syntheses of new ruthenium clusters containing sulfur, ynyl and diynyl ligands. Crystal structures of [Ru3(CO)9(Âμ-η2-SCî€,CSiMe3)(Âμ3-η2-Cî€,CSiMe3)], [Ru4(CO)12(Âμ4-S)(Âμ-I·2-Cî€,CSiMe3)2] and		

#	Article	IF	CITATIONS
37	Biophysical Characterization of Glycodendrimers As Nano-carriers for HIV Peptides. Current Medicinal Chemistry, 2013, 20, 3935-3943.	1.2	17
38	Mono- and Dinuclear Cyclopentadienylsiloxo Titanium Complexes: Synthesis, Reactivity, and Catalytic Polymerization Applications. Organometallics, 2008, 27, 5588-5597.	1.1	16
39	The Antibacterial Effect of PEGylated Carbosilane Dendrimers on P. aeruginosa Alone and in Combination with Phage-Derived Endolysin. International Journal of Molecular Sciences, 2022, 23, 1873.	1.8	16
40	Aryl-imido niobium complexes with chloro-silyl and aryl-Îamidosilyl cyclopentadienyl ligands: X-ray structure of the constrained-geometry compound [Nb(Î-5-C5H4SiMe2-Î-1-NAr)(NAr)Cl] (Ar=2,6-Me2C6H3). Polyhedron, 2005, 24, 1274-1279.	1.0	15
41	Synthesis of the Cation Complex [TaCp*Me3]+ and a Comparison of Its Reactivity with That of [TaCp*Me4]. Organometallics, 2006, 25, 2331-2336.	1.1	15
42	Synthesis of Neutral and Cationic Monocyclopentadienyl Tantalum Alkoxo Complexes and Polymerization of Methyl Methacrylate. Organometallics, 2007, 26, 2880-2884.	1.1	15
43	Improved Efficiency of Ibuprofen by Cationic Carbosilane Dendritic Conjugates. Molecular Pharmaceutics, 2016, 13, 3427-3438.	2.3	15
44	Evaluation of dendronized gold nanoparticles as siRNAs carriers into cancer cells. Journal of Molecular Liquids, 2021, 324, 114726.	2.3	15
45	Anticancer Activity of Dendriplexes against Advanced Prostate Cancer from Protumoral Peptides and Cationic Carbosilane Dendrimers. Biomacromolecules, 2019, 20, 1224-1234.	2.6	14
46	Functionalization of silica with amine and ammonium alkyl chains, dendrons and dendrimers: Synthesis and antibacterial properties. Materials Science and Engineering C, 2020, 109, 110526.	3.8	14
47	Insertion of carbon dioxide and isocyanide into tantalum–amide and tantalum–methyl bonds. Journal of Organometallic Chemistry, 2001, 621, 299-303.	0.8	13
48	Synthesis and fluorescent properties of cationic carbosilane dendrimers containing eugenol linkers for their use in biomedical applications. New Journal of Chemistry, 2012, 36, 360-370.	1.4	12
49	Bacteria capture with magnetic nanoparticles modified with cationic carbosilane dendritic systems. Materials Science and Engineering C, 2022, 133, 112622.	3.8	12
50	Trapping Unstable Terminal Mâ^'O Multiple Bonds of Monocyclopentadienyl Niobium and Tantalum Complexes with Lewis Acids. Inorganic Chemistry, 2010, 49, 10642-10648.	1.9	11
51	Synthesis and transformations of 60-, 62-, and 64-electron $Co4(CO)x(PNR2)2$ (x = 8, 9, 10) clusters. Canadian Journal of Chemistry, 2004, 82, 1507-1516.	0.6	10
52	Study of cationic carbosilane dendrimers as potential activating stimuli in macrophages. RSC Advances, 2013, 3, 23445.	1.7	10
53	Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. International Journal of Biological Macromolecules, 2018, 108, 936-941.	3.6	10
54	Strategies for penicillin V dendronization with cationic carbosilane dendrons and study of antibacterial properties. Canadian Journal of Chemistry, 2017, 95, 927-934.	0.6	9

#	Article	IF	Citations
55	Effect of PEGylation on the biological properties of cationic carbosilane dendronized gold nanoparticles. International Journal of Pharmaceutics, 2020, 573, 118867.	2.6	9
56	PEGylation of dendronized silver nanoparticles increases the binding affinity of antimicrobial proteins. Journal of Molecular Liquids, 2020, 319, 114339.	2.3	9
57	Gold nanoparticles coated with carbosilane dendrons in protein sample preparation. Mikrochimica Acta, 2019, 186, 508.	2.5	8
58	Immobilization of thermolysin enzyme on dendronized silica supports. Evaluation of its feasibility on multiple protein hydrolysis cycles. International Journal of Biological Macromolecules, 2020, 165, 2338-2348.	3.6	8
59	PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. Journal of Physical Chemistry B, 2021, 125, 1196-1206.	1.2	8
60	CHAPTER 5. Poly(carbosilane) Dendrimers and Other Silicon-containing Dendrimers. Monographs in Supramolecular Chemistry, 2020, , 114-145.	0.2	8
61	The formation of mixed metal aminophosphinidene clusters via reactions of terminal chloroaminophosphido complexes with Co2(CO)8. Canadian Journal of Chemistry, 2003, 81, 1149-1156.	0.6	7
62	Study of non-covalent interactions on dendriplex formation: Influence of hydrophobic, electrostatic and hydrogen bonds interactions. Colloids and Surfaces B: Biointerfaces, 2018, 162, 380-388.	2.5	7
63	Triazine–Carbosilane Dendrimersomes Enhance Cellular Uptake and Phototoxic Activity of Rose Bengal in Basal Cell Skin Carcinoma Cells. International Journal of Nanomedicine, 2022, Volume 17, 1139-1154.	3.3	7
64	The Synthesis and Reactivity of New Â2- and Â3-Aminophosphinidene Cobalt Complexes. Journal of Cluster Science, 2004, 15, 151-162.	1.7	6
65	Synthesis and reactivity of imido niobium complexes containing the functionalized (dichloromethylsilyl)cyclopentadienyl ligand. Inorganica Chimica Acta, 2007, 360, 1305-1309.	1.2	6
66	Synthesis and Reactivity of Oxametallacyclic Niobium Compounds by Using \hat{l}_{\pm},\hat{l}^2 -Unsaturated Carbonyl Ligands. European Journal of Inorganic Chemistry, 2008, 2008, 2313-2320.	1.0	6
67	Dinuclear Dicyclopentadienyl Titanium Complexes with Bridging Cyclopentadienylsiloxo Ligands. Organometallics, 2010, 29, 642-655.	1.1	6
68	Feasibility of cationic carbosilane dendrimers for sustainable protein sample preparation. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110746.	2.5	6
69	Dendritic Nanotheranostic for the Delivery of Infliximab: A Potential Carrier in Rheumatoid Arthritis Therapy. International Journal of Molecular Sciences, 2020, 21, 9101.	1.8	6
70	New synthetic procedure for the antiviral sulfonate carbosilane dendrimer G2-S16 and its fluorescein-labelled derivative for biological studies. RSC Advances, 2020, 10, 20083-20088.	1.7	6
71	Synthesis of neutral and cationic monocyclopentadienyl alkyl niobium and tantalum complexes. Journal of Organometallic Chemistry, 2010, 695, 2469-2473.	0.8	5
72	Synthesis of degradable cationic carbosilane dendrimers based on Si–O or ester bonds. Tetrahedron, 2016, 72, 5825-5830.	1.0	5

#	Article	IF	CITATIONS
73	Hexacarbonyldicobalt addition across the C[triple-bond]C bond of the alkynethiolate ligand in the cluster [Ru3(ν3,η2-C[triple-bond]CSiMe3)(ν-SC[triple-bond]CSiMe3)(CO)9]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m207-m209.	0.2	4
74	Cationic Dendritic Systems as Non-viral Vehicles for Gene Delivery Applications. RSC Polymer Chemistry Series, 2014, , 321-355.	0.1	1