Daniel W Pack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7377001/publications.pdf Version: 2024-02-01

DANIEL W PACK

Article	IF	CITATIONS
Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005, 4, 581-593.	21.5	2,279
Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 2000, 17, 100-106.	1.7	659
Microspheres for controlled release drug delivery. Expert Opinion on Biological Therapy, 2004, 4, 35-51.	1.4	364
Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 2002, 82, 137-147.	4.8	348
Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. Journal of Controlled Release, 2001, 73, 59-74.	4.8	314
Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217-223.	1.7	270
Acetylation of Polyethylenimine Enhances Gene Delivery via Weakened Polymer/DNA Interactions. Biomacromolecules, 2006, 7, 2427-2435.	2.6	251
Partial Acetylation of Polyethylenimine Enhances In Vitro Gene Delivery. Pharmaceutical Research, 2004, 21, 365-371.	1.7	222
Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. Journal of Controlled Release, 2009, 136, 54-61.	4.8	183
PLG microsphere size controls drug release rate through several competing factors. Pharmaceutical Research, 2003, 20, 1055-1062.	1.7	182
Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Journal of Controlled Release, 2004, 94, 129-141.	4.8	170
Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine. Journal of Materials Chemistry, 2007, 17, 3354.	6.7	145
On the Kinetics of Polyplex Endocytic Trafficking: Implications for Gene Delivery Vector Design. Molecular Therapy, 2002, 6, 57-66.	3.7	124
Uniform double-walled polymer microspheres of controllable shell thickness. Journal of Controlled Release, 2004, 96, 101-111.	4.8	120
Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma. Biomaterials, 2013, 34, 5149-5162.	5.7	77
Monodisperse Liquid-filled Biodegradable Microcapsules. Pharmaceutical Research, 2007, 24, 1007-1013.	1.7	57
Macromolecule Release from Monodisperse PLG Microspheres: Control of Release Rates and Investigation of Release Mechanism. Journal of Pharmaceutical Sciences, 2007, 96, 1176-1191.	1.6	56
Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres. Chemical Engineering Science, 2013, 104, 330-346.	1.9	56
	Arricle Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005, 4, 581-593. Wsual evidence of acidic environment within degrading poly(factic-co-glycolic acid) (PLCA) microspheres. For controlled release drug delivery. Expert Opinion on Biological Therapy, 2004, 4, 35-51. Precise control of PLG microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 2002, 82, 137-147. Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. Journal of Controlled Release, 2001, 73, 59-74. Design of inidazole contraining endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217-223. Acceptation of Polyethyleninine Enhances Gene Delivery via Weakened Polymer/DNA Interactions. Biomacromolecus, 2006, 7, 217-223. Partial Acetylation of Polyethyleninine Enhances In Vitro Gene Delivery. Pharmaceutical Research, 2004, 21, 36-371. Pfficient polyethyleninine-mediated gene delivery proceeds via a caveolar pathway in Hela cells. pournal of Controlled Release, 2009, 136, 54-61. PIC microsphere size controls drug release rate through several competing factors. Pharmaceutical Research, 2003, 20, 1055-1062. Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres. Journal of Controlled Release, 2004, 94, 129-141. Synthesis and functionalization of polybyrole-Fe3O4 nanoparticles for applications in biomedicine. Journal of Matenis C	Aktricus IF Design and development of polymers for gene delivery. Nature Reviews Drug Discovery, 2005, 4, 581-593. 21.6 Wsual evidence of acidic environment within degrading poly(lactic co-glycolic acid) (PLGA) 1.7 Microspheres. Pharmaceutical Research, 2000, D7, 100-106. 1.4 Precise control of PLC microsphere size provides enhanced control of drug release rate. Journal of Controlled release, 2002, 62, 137-147. 4.8 Precise control of PLC microsphere size provides enhanced control of drug release rate. Journal of Controlled Release, 2001, 73, 59-74. 4.8 Design of initiazele-containing endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217-223. 2.6 Pertial Acetylation of PQC microsphere size of additional dispersion of Polymering Enhances in Vitro Gene Delivery. Pharmaceutical Research, 2004, 72, 2427-2435. 2.6 Partial Acetylation of Polyethylenimine Enhances in Vitro Gene Delivery. Pharmaceutical Research, 2004, 21, 365-371. 1.7 Efficient polyethylenimine Enhances in Vitro Gene Delivery. Pharmaceutical Research, 2003, 20, 1055-105. 4.8 PCG microsphere size controls drug release rate through several competing factors. Pharmaceutical Research, 2003, 20, 1055-105. 4.8 Synthesis and functionalization of polyetyrele-Fe3O4 nanoparticles for applications in biomedicine. 6.7 On the Kinetics of Polyethylen trinspheres of controllable shell thickness. Journal of Controlled Release, 2003, 137, 1355. 5.7 Uniform double-walled polyemer microspheres

DANIEL W PACK

#	Article	IF	CITATIONS
19	Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy. Journal of Controlled Release, 2012, 163, 130-135.	4.8	55
20	Mechanism of drug release from double-walled PDLLA(PLGA) microspheres. Biomaterials, 2013, 34, 3902-3911.	5.7	55
21	Three-month, zero-order piroxicam release from monodispersed double-walled microspheres of controlled shell thickness. Journal of Biomedical Materials Research Part B, 2004, 70A, 576-584.	3.0	47
22	Dependence of PEI and PAMAM Gene Delivery on Clathrin- and Caveolin-Dependent Trafficking Pathways. Pharmaceutical Research, 2015, 32, 2051-2059.	1.7	41
23	Small-Molecule Release from poly(D,L-Lactide)/Poly(D,L-Lactide-co-Glycolide) Composite Microparticles. Journal of Pharmaceutical Sciences, 2005, 94, 2013-2022.	1.6	39
24	A top-down approach for construction of hybrid polymer-virus gene delivery vectors. Journal of Controlled Release, 2010, 144, 39-45.	4.8	34
25	Uniform biodegradable microparticle systems for controlled release. Chemical Engineering Science, 2015, 125, 129-143.	1.9	33
26	Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. Journal of Controlled Release, 2013, 172, 707-714.	4.8	31
27	Prospects of siRNA applications in regenerative medicine. International Journal of Pharmaceutics, 2017, 524, 312-329.	2.6	28
28	Design of Hybrid Lipid/Retroviral-Like Particle Gene Delivery Vectors. Molecular Pharmaceutics, 2013, 10, 1725-1735.	2.3	25
29	Succinylated Polyethylenimine Derivatives Greatly Enhance Polyplex Serum Stability and Gene Delivery In Vitro. Biomacromolecules, 2018, 19, 4348-4357.	2.6	22
30	Endocytic Transport of Polyplex and Lipoplex siRNA Vectors in HeLa Cells. Pharmaceutical Research, 2016, 33, 2999-3011.	1.7	19
31	In vitro degradation of polyanhydride/polyester core-shell double-wall microspheres. International Journal of Pharmaceutics, 2005, 301, 294-303.	2.6	18
32	Protein Encapsulation in and Release from Monodisperse Double-Wall Polymer Microspheres. Journal of Pharmaceutical Sciences, 2013, 102, 1601-1609.	1.6	18
33	Engineering of a Stable Retroviral Gene Delivery Vector by Directed Evolution. Molecular Therapy, 2008, 16, 308-314.	3.7	17
34	Polypyrrole Nanospheres with Magnetic and Cell-Targeting Capabilities. Macromolecular Rapid Communications, 2007, 28, 816-821.	2.0	16
35	The effect of glycosaminoglycan content on polyethylenimine-based gene delivery within three-dimensional collagen-GAG scaffolds. Biomaterials Science, 2015, 3, 645-654.	2.6	16
36	Intracellular trafficking of hybrid gene delivery vectors. Journal of Controlled Release, 2015, 207, 120-130.	4.8	16

DANIEL W PACK

#	Article	IF	CITATIONS
37	Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres. PLoS ONE, 2015, 10, e0135506.	1.1	15
38	Effect of Serum on Transfection by Polyethylenimine/Virus-Like Particle Hybrid Gene Delivery Vectors. Pharmaceutical Research, 2010, 27, 2457-2465.	1.7	14
39	Pulsatile Protein Release from Monodisperse Liquid-Core Microcapsules of Controllable Shell Thickness. Pharmaceutical Research, 2014, 31, 3201-3210.	1.7	14
40	Efficient in vitro gene delivery by hybrid biopolymer/virus nanobiovectors. Journal of Controlled Release, 2014, 192, 40-46.	4.8	13
41	Rapid and facile quantitation of polyplex endocytic trafficking. Journal of Controlled Release, 2017, 247, 19-27.	4.8	9
42	Enhanced Gene Delivery and CRISPR/Cas9 Homology-Directed Repair in Serum by Minimally Succinylated Polyethylenimine. Molecular Pharmaceutics, 2021, 18, 3452-3463.	2.3	7
43	Evaluation of FOXC1 as a therapeutic target for basal-like breast cancer. Cancer Gene Therapy, 2018, 25, 84-91.	2.2	6
44	Design of imidazole-containing endosomolytic biopolymers for gene delivery. Biotechnology and Bioengineering, 2000, 67, 217.	1.7	4
45	Microspheres for controlled release drug delivery. , 0, .		3