Martin Goez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7376800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A pre-existing hydrophobic collapse in the unfolded state of an ultrafast folding protein. Nature, 2007, 447, 106-109.	27.8	148
2	Combining energy and electron transfer in a supramolecular environment for the "green―generation and utilization of hydrated electrons through photoredox catalysis. Chemical Science, 2016, 7, 3862-3868.	7.4	67
3	Chapter 3 Photo-CIDNP Spectroscopy. Annual Reports on NMR Spectroscopy, 2009, 66, 77-147.	1.5	64
4	Photo-CIDNP investigation of the deprotonation of aminium cations. Journal of the American Chemical Society, 1993, 115, 11123-11133.	13.7	58
5	Generating Hydrated Electrons for Chemical Syntheses by Using a Green Lightâ€Emitting Diode (LED). Angewandte Chemie - International Edition, 2018, 57, 1078-1081.	13.8	53
6	An "Allâ€Green―Catalytic Cycle of Aqueous Photoionization. Angewandte Chemie - International Edition, 2014, 53, 9914-9916.	13.8	51
7	Laboratory-scale photoredox catalysis using hydrated electrons sustainably generated with a single green laser. Chemical Science, 2017, 8, 7510-7520.	7.4	45
8	Photoinduced Electron-Transfer Reactions of Aryl Olefins. 1. Investigation of the Paterno-Buechi Reaction between Quinones and Anetholes in Polar Solvents. Journal of the American Chemical Society, 1994, 116, 11999-12009.	13.7	44
9	Photoionization via Absorption/Electron Transfer/Absorption Studied by Two-Pulse Two-Color Laser Flash Photolysis. Journal of the American Chemical Society, 1998, 120, 5347-5348.	13.7	34
10	How the sustainable solvent water unleashes the photoredox catalytic potential of ruthenium polypyridyl complexes for pinacol couplings. Green Chemistry, 2019, 21, 4470-4474.	9.0	32
11	Photoinduced Electron Transfer Reactions of Aryl Olefins. 2.â€Cisâ^'Trans Isomerization and Cycloadduct Formation in Anetholeâ^'Fumaronitrile Systems in Polar Solvents. Journal of the American Chemical Society, 1996, 118, 140-154.	13.7	30
12	CIDNP Spectroscopic Observation of (S:.+N) Radical Cations with a Two-Center Three-Electron Bond During the Photooxidation of Methionine. Angewandte Chemie - International Edition, 1998, 37, 628-630.	13.8	30
13	Photoionization of xanthone via its triplet state or via its radical anion. Physical Chemistry Chemical Physics, 2004, 6, 5490.	2.8	29
14	3-Aminoperylene and ascorbate in aqueous SDS, one green laser flash … and action! Sustainably detoxifying a recalcitrant chloro-organic. Photochemical and Photobiological Sciences, 2017, 16, 1613-1622.	2.9	27
15	Photoinduced Electron Transfer, Decarboxylation, and Radical Fragmentation of Cysteine Derivatives: A Chemically Induced Dynamic Nuclear Polarization Study. Journal of the American Chemical Society, 1996, 118, 2882-2891.	13.7	26
16	Photoionization of [Ru(bpy)3]2+:Â A Catalytic Cycle with Water as Sacrificial Donor. Journal of Physical Chemistry A, 2004, 108, 1090-1100.	2.5	26
17	Highly efficient green-light ionization of an aryl radical anion: key step in a catalytic cycle of electron formation. Physical Chemistry Chemical Physics, 2014, 16, 25342-25349.	2.8	25
18	CIDNP Determination of the Rate of In-Cage Deprotonation of the Triethylamine Radical Cation. Journal of Physical Chemistry A, 2003, 107, 8539-8546.	2.5	24

MARTIN GOEZ

#	Article	IF	CITATIONS
19	Sustainable, inexpensive and easy-to-use access to the super-reductant eë™â^'aq through 355 nm photoionization of the ascorbate dianion—an alternative to radiolysis or UV-C photochemistry. Green Chemistry, 2016, 18, 4761-4771.	9.0	24
20	Elucidating Organic Reaction Mechanisms Using Photo-CIDNP Spectroscopy. Topics in Current Chemistry, 2012, 338, 1-32.	4.0	22
21	Reversible Pair Substitution in CIDNP:  The Radical Cation of Methionine. Journal of Physical Chemistry A, 1998, 102, 7945-7953.	2.5	21
22	Photo-CIDNP experiments with an optimized presaturation pulse train, gated continuous illumination, and a background-nulling pulse grid. Journal of Magnetic Resonance, 2005, 177, 236-246.	2.1	21
23	Photocycloadditions of Quinones with Quadricyclane and Norbornadiene. A Mechanistic Study. Journal of the American Chemical Society, 1995, 117, 10486-10502.	13.7	20
24	Combined static and dynamic intramicellar fluorescence quenching: effects on stationary and time-resolved Stern–Volmer experiments. Physical Chemistry Chemical Physics, 2019, 21, 10075-10085.	2.8	20
25	The Degenerate Electron Exchange between N,N-Dimethylanilines and their Radical Cations. Zeitschrift Fur Physikalische Chemie, 1990, 169, 133-145.	2.8	19
26	Generating hydrated electrons through photoredox catalysis with 9-anthrolate. Physical Chemistry Chemical Physics, 2015, 17, 13829-13836.	2.8	19
27	First Micelleâ€Free Photoredox Catalytic Access to Hydrated Electrons for Syntheses and Remediations with a Visible LED or even Sunlight. Chemistry - A European Journal, 2018, 24, 17557-17567.	3.3	19
28	Generating Hydrated Electrons for Chemical Syntheses by Using a Green Lightâ€Emitting Diode (LED). Angewandte Chemie, 2018, 130, 1090-1093.	2.0	19
29	Two-Photon Ionization of 1,5-Anthraquinonedisulfonate via Photoinduced Electron Transfer. Journal of Physical Chemistry A, 1999, 103, 9605-9613.	2.5	18
30	Light intensity dependence of a two-photon catalytic cycle: photoionization via absorption–electron transfer–absorption. Chemical Physics, 2000, 256, 107-116.	1.9	18
31	Absorption/Electron Transfer/Absorption— An Efficient Pathway to Hydrated Electrons in Laser Flash Photolysis. Angewandte Chemie International Edition in English, 1997, 36, 2664-2666.	4.4	17
32	Near-UV Photoionization of [Ru(bpy) ₃] ²⁺ : A Catalytic Cycle with an Excited Species as Catalyst. Angewandte Chemie - International Edition, 2002, 41, 1535-1538.	13.8	17
33	Micellized Tris(bipyridine)ruthenium Catalysts Affording Preparative Amounts of Hydrated Electrons with a Green Lightâ€Emitting Diode. Chemistry - A European Journal, 2018, 24, 13259-13269.	3.3	17
34	Sensitized Photolysis of Iodonium Salts Studied by CIDNP. Solvent Dependence and Influence of Lipophilic Substituents. Journal of Physical Chemistry A, 1999, 103, 5714-5721.	2.5	16
35	Activation Energy of a Biradical Rearrangement Measured by Photo-CIDNP. Journal of Physical Chemistry A, 2002, 106, 8079-8084.	2.5	16
36	Counterintuitive Influence of Protonation on Radicalâ€Anion Photoionization. Angewandte Chemie - International Edition, 2012, 51, 12606-12608.	13.8	16

MARTIN GOEZ

#	Article	IF	CITATIONS
37	Increasing the sensitivity of time-resolved photo-CIDNP experiments by multiple laser flashes and temporary storage in the rotating frame. Journal of Magnetic Resonance, 2005, 177, 139-145.	2.1	15
38	A Green‣ED Driven Source of Hydrated Electrons Characterized from Microseconds to Hours and Applied to Crossâ€Couplings. Chemistry - A European Journal, 2018, 24, 9833-9840.	3.3	15
39	Control of the Deprotonation Route of an Aminium Cation by the Solvent Polarity. Chemische Berichte, 1994, 127, 2273-2276.	0.2	14
40	Olefin Isomerizationvia Radical-Ion Pairs in Triplet States Studied by Chemically Induced Dynamic Nuclear Polarization (CIDNP). Helvetica Chimica Acta, 2006, 89, 2183-2199.	1.6	14
41	Cavity enhanced detection methods for probing the dynamics of spin correlated radical pairs in solution. Molecular Physics, 2010, 108, 993-1003.	1.7	14
42	Laserâ€Induced Wurtzâ€Type Syntheses with a Metalâ€Free Photoredox Catalytic Source of Hydrated Electrons. Chemistry - A European Journal, 2019, 25, 9991-9996.	3.3	14
43	CIDNP Investigation of Radical Decay Pathways in the Sensitized Photolysis of Triphenylsulfonium Salts. Journal of the American Chemical Society, 1999, 121, 2274-2280.	13.7	13
44	Novel pulse sequences for time-resolved photo-CIDNP. Molecular Physics, 2006, 104, 1675-1686.	1.7	13
45	Green-light ionization of 3-aminoperylene in SDS micelles—a promising access to hydrated electrons despite a myth debunked. Photochemical and Photobiological Sciences, 2017, 16, 185-192.	2.9	13
46	Resveratrol Radical Repair by Vitaminâ€C at the Micelle–Water Interface: Unexpected Reaction Rates Explained by Ion–Dipole Interactions. Chemistry - A European Journal, 2018, 24, 3038-3044.	3.3	13
47	A comparative study of triplet and radical-anion photoionization of propiophenone. Chemical Physics, 2004, 307, 15-26.	1.9	12
48	A new approach to elucidating repair reactions of resveratrol. Physical Chemistry Chemical Physics, 2015, 17, 13915-13920.	2.8	11
49	Photoionization access to cyclodextrin-encapsulated resveratrol phenoxy radicals and their repair by ascorbate across the phase boundary. Physical Chemistry Chemical Physics, 2016, 18, 20802-20811.	2.8	11
50	Combined static and dynamic quenching in micellar systems—closed-form integrated rate laws verified using a versatile probe. Physical Chemistry Chemical Physics, 2017, 19, 8735-8741.	2.8	10
51	Deprotonation of aminium cations — a CIDNP study of relative group reactivities. Journal of Photochemistry and Photobiology A: Chemistry, 1994, 84, 1-12.	3.9	8
52	Photoinduced electron transfer sensitization investigated by chemically induced dynamic nuclear polarizatioin (CIDNP). Physical Chemistry Chemical Physics, 2006, 8, 5294.	2.8	8
53	Quenching Mechanisms and Diffusional Pathways in Micellar Systems Unravelled by Timeâ€Resolved Magneticâ€Field Effects. Chemistry - A European Journal, 2009, 15, 6058-6064.	3.3	8
54	Electron and hydrogen self-exchange of free radicals of sterically hindered tertiary aliphatic amines investigated by photo-CIDNP. Beilstein Journal of Organic Chemistry, 2013, 9, 437-446.	2.2	5

Martin Goez

#	Article	IF	CITATIONS
55	Pyrene–viologen complexes in SDS micelles: quenching parameters and use as probes of aggregation numbers. Photochemical and Photobiological Sciences, 2020, 19, 71-79.	2.9	5
56	Efficient Photoionization of a Norrish II Diradical. Angewandte Chemie - International Edition, 2006, 45, 2135-2138.	13.8	4
57	The photoreduction of [Ru(bpy)3]3+ investigated by two-pulse two-colour laser-flash photolysis. Chemical Physics Letters, 2007, 447, 352-357.	2.6	3
58	Laser flash photolysis with back-reflected excitation light—Analysis and experimental verification of the improvements in excitation intensity and homogeneity by a retroreflector. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 262, 1-6.	3.9	2
59	The Influence of Sodium Dodecyl Sulfate on the Photoionization of the Ruthenium(tris)bipyridine Dication. Zeitschrift Fur Physikalische Chemie, 2014, 228, 193-207.	2.8	2
60	Laser Access to Quercetin Radicals and Their Repair by Coâ€antioxidants. Chemistry - A European Journal, 2020, 26, 17428-17436.	3.3	2
61	Do equilibrium and rate constants of intramicellar reactions depend on micelle size?. Physical Chemistry Chemical Physics, 2021, 23, 9709-9714.	2.8	2
62	The radicals of quercetin-derived antioxidants in Triton X-100 micelles. Physical Chemistry Chemical Physics, 2022, , .	2.8	0