
Giuseppe Calogero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7376566/publications.pdf Version: 2024-02-01

CHISEPPE CALOCEPO

#	Article	IF	CITATIONS
1	The Golden Fig: A Plasmonic Effect Study of Organic-Based Solar Cells. Nanomaterials, 2022, 12, 267.	1.9	10
2	A Photoelectrochemical Study of Hybrid Organic and Donor—Acceptor Dyes as Sensitizers for Dye-Sensitized Solar Cells. Applied Sciences (Switzerland), 2022, 12, 3159.	1.3	4
3	Optically Transparent Gold Nanoparticles for DSSC Counter-Electrode: An Electrochemical Characterization. Molecules, 2022, 27, 4178.	1.7	3
4	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
5	Universal Fabrication of Highly Efficient Plasmonic Thinâ€Films for Labelâ€Free SERS Detection. Small, 2021, 17, e2100755.	5.2	23
6	Dye-sensitized solar cells: from synthetic dyes to natural pigments. , 2020, , 107-161.		11
7	Dye-sensitized solar cells based on dimethylamino-Ï€-bridge-pyranoanthocyanin dyes. Solar Energy, 2020, 206, 188-199.	2.9	15
8	Study of the multi-equilibria of red wine colorants pyranoanthocyanins and evaluation of their potential in dye-sensitized solar cells. Solar Energy, 2019, 191, 100-108.	2.9	17
9	Computational aspects of anthocyanidins and anthocyanins: A review. Food Chemistry, 2019, 297, 124898.	4.2	101
10	Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts. Dyes and Pigments, 2019, 170, 107577.	2.0	26
11	CVD-graphene/graphene flakes dual-films as advanced DSSC counter electrodes. 2D Materials, 2019, 6, 035007.	2.0	23
12	A Photoelectrochemical Study of Bioinspired 2-Styryl-1-Benzopyrylium Cations on TiO2 Nanoparticle Layer for Application in Dye-Sensitized Solar Cells. Materials, 2019, 12, 4060.	1.3	7
13	Absorption spectra, thermal analysis, photoelectrochemical characterization and stability test of vegetable-based dye-sensitized solar cells. Optical Materials, 2019, 88, 24-29.	1.7	19
14	Mobilities of iodide anions in aqueous solutions for applications in natural dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2018, 20, 13038-13046.	1.3	22
15	Photoelectrochemical and spectrophotometric studies on dye-sensitized solar cells (DSCs) and stable modules (DSCMs) based on natural apocarotenoids pigments. Dyes and Pigments, 2018, 155, 75-83.	2.0	37
16	Combined experimental and DFT-TDDFT investigation on anthocyanidins for application in dye-sensitised solar cells. Dyes and Pigments, 2017, 143, 291-300.	2.0	18
17	Synthesis and Characterization of a Series of Bis-homoleptic Cycloruthenates with Terdentate Ligands as a Family of Panchromatic Dyes. Inorganic Chemistry, 2017, 56, 9903-9912.	1.9	5
18	Electronic and charge transfer properties of bio-inspired flavylium ions for applications in TiO2-based dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2017, 16, 1400-1414.	1.6	18

#	Article	IF	CITATIONS
19	Improvement of DSSC performance by voltage stress application. , 2016, , .		0
20	Thin-Film Photovoltaics 2014. International Journal of Photoenergy, 2015, 2015, 1-3.	1.4	0
21	Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation. Physical Chemistry Chemical Physics, 2015, 17, 21594-21604.	1.3	10
22	Nanostructured anatase TiO2 densified at high pressure as advanced visible light photocatalysts. Photochemical and Photobiological Sciences, 2015, 14, 1685-1693.	1.6	15
23	Vegetable-based dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3244-3294.	18.7	304
24	Photophysical Processes Occurring in a Zn-phthalocyanine in Ethanol Solution and on TiO ₂ Nanostructures. Journal of Physical Chemistry C, 2015, 119, 20256-20264.	1.5	10
25	Thin-Film Photovoltaics 2013. International Journal of Photoenergy, 2014, 2014, 1-3.	1.4	0
26	Insights into meso-structured photoanodes based on titanium oxide thin film with high dye adsorption ability. Journal of Alloys and Compounds, 2014, 609, 116-124.	2.8	13
27	Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 117, 702-706.	2.0	75
28	Visible-light driven oxidation of gaseous aliphatic alcohols to the corresponding carbonyls via TiO2 sensitized by a perylene derivative. Environmental Science and Pollution Research, 2014, 21, 11135-11141.	2.7	28
29	Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 477-484.	2.0	40
30	Synthetic analogues of anthocyanins as sensitizers for dye-sensitized solar cells. Photochemical and Photobiological Sciences, 2013, 12, 883-894.	1.6	95
31	A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared. Plasmonics, 2013, 8, 13-23.	1.8	36
32	RTV Silicone Membranes as Agents to Confine the Liquid Components in Dye Sensitized Solar Cells. Journal of Materials, 2013, 2013, 1-9.	0.1	1
33	Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy, 2012, 86, 1563-1575.	2.9	315
34	Re-radiation Enhancement in Polarized Surface-Enhanced Resonant Raman Scattering of Randomly Oriented Molecules on Self-Organized Gold Nanowires. ACS Nano, 2011, 5, 5945-5956.	7.3	94
35	A new type of transparent and low cost counter-electrode based on platinum nanoparticles for dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 1838.	15.6	198
36	Metal Nanoparticles and Carbon-Based Nanostructures as Advanced Materials for Cathode Application in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-15.	1.4	57

GIUSEPPE CALOGERO

#	Article	IF	CITATIONS
37	Bridged Phthalocyanine Systems for Sensitization of Nanocrystalline TiO2Films. International Journal of Photoenergy, 2010, 2010, 1-11.	1.4	13
38	Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits. International Journal of Molecular Sciences, 2010, 11, 254-267.	1.8	233
39	Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. Dalton Transactions, 2010, 39, 2903.	1.6	48
40	Brownian Motion of Graphene. ACS Nano, 2010, 4, 7515-7523.	7.3	194
41	Rotation Detection in Light-Driven Nanorotors. ACS Nano, 2009, 3, 3077-3084.	7.3	112
42	Natural dye senstizers for photoelectrochemical cells. Energy and Environmental Science, 2009, 2, 1162.	15.6	162
43	Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1341-1346.	3.0	282
44	Heteronuclear bipyrimidine-bridged Ru–Ln and Os–Ln dyads: low-energy ³ MLCT states as energy-donors to Yb(iii) and Nd(iii). Dalton Transactions, 2008, , 691-698.	1.6	50
45	Syntheses and Crystal Structures of Dinuclear Complexes Containing d-Block and f-Block Luminophores. Sensitization of NIR Luminescence from Yb(III), Nd(III), and Er(III) Centers by Energy Transfer from Re(I)â^' and Pt(II)â^'Bipyrimidine Metal Centers. Inorganic Chemistry, 2005, 44, 61-72.	1.9	192
46	Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane. Catalysis Communications, 2001, 2, 49-56.	1.6	107
47	Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources, 2000, 87, 28-38.	4.0	190
48	Assemblies of luminescent ruthenium(II)— and osmium(II)—polypyridyl complexes based on hydrogen bonding. Coordination Chemistry Reviews, 1998, 171, 481-488.	9.5	59
49	A functionalized ruthenium(ii)-bis-terpyridine complex as a rod-like luminescent sensor of zinc(ii). Chemical Communications, 1998, , 2333-2334.	2.2	66
50	Synthesis, Characterization, Absorption Spectra, and Luminescence Properties of Organometallic Platinum(II) Terpyridine Complexes. Inorganic Chemistry, 1998, 37, 2763-2769.	1.9	164
51	Electronic energy transfer between ruthenium(II) and osmium(II) polypyridyl luminophores in a hydrogen-bonded supramolecular assembly. Chemical Communications, 1997, , 2181-2182.	2.2	30
52	Intercomponent Electronic Energy Transfer in Heteropolynuclear Complexes Containing Ruthenium- and Rhenium-Based Chromophores Bridged by an Asymmetric Quaterpyridine Ligand. Inorganic Chemistry, 1997, 36, 2601-2609.	1.9	37
53	A cyclometallated ruthenium(ii) complex with a sterically hindered ligand displaying a long-lived MLCT excited state. Chemical Communications, 1997, , 775-776.	2.2	29
54	A Study on Delocalization of MLCT Excited States by Rigid Bridging Ligands in Homometallic Dinuclear Complexes of Ruthenium(II). Journal of Physical Chemistry A, 1997, 101, 9061-9069.	1.1	146

GIUSEPPE CALOGERO

#	Article	IF	CITATION
55	Derivatives of luminescent metal–polypyridyl complexes with pendant adenine or thymine groups: building blocks for supramolecular assemblies based on hydrogen bonding. Journal of the Chemical Society Dalton Transactions, 1997, , 727-736.	1.1	25
56	Luminescence of azobenzene derivatives induced by cyclopalladation. Chemical Physics Letters, 1997, 267, 341-344.	1.2	58
57	Near-infrared luminescence at room temperature of two new osmium(II) terdentate polypyridine complexes. Chemical Communications, 1996, , 1225.	2.2	16
58	Photoinduced intercomponent energy transfer in covalently-linked dinuclear complexes containing Ru(II)-bipyridine and Ru(II)-biquinoline chromophores and aromatic and aliphatic spacers. Inorganica Chimica Acta, 1996, 251, 255-264.	1.2	14
59	Photoinduced Intercomponent Energy Transfer in a New Heterometallic Dinuclear Complex of Ru(II) and Os(II) with a 3,5-Bis(2-pyridyl)-1,2,4-triazole Cyclohexyl-Bridged Spacer. Inorganic Chemistry, 1995, 34, 1957-1960.	1.9	21
60	Absorption Spectra, Luminescence Properties, and Electrochemical Behavior of Cyclometalated Iridium(III) and Rhodium(III) Complexes with a Bis(pyridyl)triazole Ligand. Inorganic Chemistry, 1995, 34, 541-545.	1.9	100
61	Mono- and dinuclear complexes of ruthenium(II) and osmium(II) with a 3,5-bis(2-pyridyl)-1,2,4-triazole cyclohexyl-bridged spacer. Absorption spectra, luminescence properties, and electrochemical behavior. Inorganic Chemistry, 1993, 32, 1179-1183.	1.9	27