Stephanie M Karst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7375249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-scale CRISPR screens identify host factors that promote human coronavirus infection. Genome Medicine, 2022, 14, 10.	8.2	26
2	Human Norovirus Triggers Primary B Cell Immune Activation <i>In Vitro</i> . MBio, 2022, 13, e0017522.	4.1	9
3	Noroviruses. , 2021, , 287-306.		0
4	Norovirus evolution in immunodeficient mice reveals potentiated pathogenicity via a single nucleotide change in the viral capsid. PLoS Pathogens, 2021, 17, e1009402.	4.7	11
5	The influence of microbiota-derived metabolites on viral infections. Current Opinion in Virology, 2021, 49, 151-156.	5.4	15
6	Development of Oral Rotavirus and Norovirus Vaccines. , 2020, , 699-712.		1
7	The intestinal regionalization of acute norovirus infection is regulated by the microbiota via bile acid-mediated priming of type III interferon. Nature Microbiology, 2020, 5, 84-92.	13.3	87
8	Norovirus infection causes acute self-resolving diarrhea in wild-type neonatal mice. Nature Communications, 2020, 11, 2968.	12.8	14
9	Infectious Norovirus Is Chronically Shed by Immunocompromised Pediatric Hosts. Viruses, 2020, 12, 619.	3.3	23
10	Survival of Human Norovirus Surrogates in Water upon Exposure to Thermal and Non-Thermal Antiviral Treatments. Viruses, 2020, 12, 461.	3.3	13
11	Editorial overview: Viruses and the microbiome. Current Opinion in Virology, 2019, 37, iii-vi.	5.4	3
12	Diverse Mechanisms Underlie Enhancement of Enteric Viruses by the Mammalian Intestinal Microbiota. Viruses, 2019, 11, 760.	3.3	15
13	Enteric Viruses Hitch a Ride on the Evolutionary Highway. Cell Host and Microbe, 2018, 23, 5-6.	11.0	12
14	The major targets of acute norovirus infection are immune cells in the gut-associated lymphoid tissue. Nature Microbiology, 2017, 2, 1586-1591.	13.3	86
15	Viral Safeguard: The Enteric Virome Protects against Gut Inflammation. Immunity, 2016, 44, 715-718.	14.3	13
16	A norovirus detection architecture based on isothermal amplification and expanded genetic systems. Journal of Virological Methods, 2016, 237, 64-71.	2.1	12
17	Recent advances in understanding norovirus pathogenesis. Journal of Medical Virology, 2016, 88, 1837-1843.	5.0	40
18	Norovirus mechanisms of immune antagonism. Current Opinion in Virology, 2016, 16, 24-30.	5.4	34

STEPHANIE M KARST

#	Article	IF	CITATIONS
19	The influence of commensal bacteria on infection with enteric viruses. Nature Reviews Microbiology, 2016, 14, 197-204.	28.6	151
20	Regulation of Norovirus Virulence by the VP1 Protruding Domain Correlates with B Cell Infection Efficiency. Journal of Virology, 2016, 90, 2858-2867.	3.4	10
21	Viruses in Rodent Colonies: Lessons Learned from Murine Noroviruses. Annual Review of Virology, 2015, 2, 525-548.	6.7	18
22	Identification of a novel cellular target and a co-factor for norovirus infection – B cells & commensal bacteria. Gut Microbes, 2015, 6, 266-271.	9.8	28
23	A Working Model of How Noroviruses Infect the Intestine. PLoS Pathogens, 2015, 11, e1004626.	4.7	70
24	Multiplex gastrointestinal pathogen panels: implications for infection control. Diagnostic Microbiology and Infectious Disease, 2015, 82, 154-157.	1.8	61
25	What Is the Reservoir of Emergent Human Norovirus Strains?. Journal of Virology, 2015, 89, 5756-5759.	3.4	78
26	Human norovirus culture in B cells. Nature Protocols, 2015, 10, 1939-1947.	12.0	202
27	The molecular pathology of noroviruses. Journal of Pathology, 2015, 235, 206-216.	4.5	66
28	The Effect of Malnutrition on Norovirus Infection. MBio, 2014, 5, e01032-13.	4.1	50
29	Enteric bacteria promote human and mouse norovirus infection of B cells. Science, 2014, 346, 755-759.	12.6	689
30	Advances in Norovirus Biology. Cell Host and Microbe, 2014, 15, 668-680.	11.0	182
31	Identification of Immune and Viral Correlates of Norovirus Protective Immunity through Comparative Study of Intra-Cluster Norovirus Strains. PLoS Pathogens, 2013, 9, e1003592.	4.7	93
32	Comparative murine norovirus studies reveal a lack of correlation between intestinal virus titers and enteric pathology. Virology, 2011, 421, 202-210.	2.4	58
33	Pathogenesis of Noroviruses, Emerging RNA Viruses. Viruses, 2010, 2, 748-781.	3.3	135
34	Type I and Type II Interferons Inhibit the Translation of Murine Norovirus Proteins. Journal of Virology, 2009, 83, 5683-5692.	3.4	79
35	Primary High-Dose Murine Norovirus 1 Infection Fails To Protect from Secondary Challenge with Homologous Virus. Journal of Virology, 2009, 83, 6963-6968.	3.4	40
36	Murine Norovirus 1 Infection Is Associated with Histopathological Changes in Immunocompetent Hosts, but Clinical Disease Is Prevented by STAT1-Dependent Interferon Responses. Journal of Virology, 2007, 81, 3251-3263.	3.4	204

#	Article	IF	CITATIONS
37	Cleavage Map and Proteolytic Processing of the Murine Norovirus Nonstructural Polyprotein in Infected Cells. Journal of Virology, 2006, 80, 7816-7831.	3.4	186
38	Replication of Norovirus in Cell Culture Reveals a Tropism for Dendritic Cells and Macrophages. PLoS Biology, 2004, 2, e432.	5.6	740
39	STAT1-Dependent Innate Immunity to a Norwalk-Like Virus. Science, 2003, 299, 1575-1578.	12.6	757
40	The Yeast Retrotransposons Ty1 and Ty3 Require the RNA Lariat Debranching Enzyme, Dbr1p, for Efficient Accumulation of Reverse Transcripts. Biochemical and Biophysical Research Communications, 2000, 268, 112-117.	2.1	44