
Igal Levine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7375168/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Photon Absorption and Charge Carrier Dynamics of BaSnO ₃ Photoanodes via Intrinsic and Extrinsic Defects. Chemistry of Materials, 2022, 34, 4320-4335.	6.7	8
2	Field Effect Passivation in Perovskite Solar Cells by a LiF Interlayer. Advanced Energy Materials, 2022, 12, .	19.5	53
3	Overcoming Phaseâ€Purity Challenges in Complex Metal Oxide Photoelectrodes: A Case Study of CuBi ₂ O ₄ . Advanced Energy Materials, 2021, 11, 2003474.	19.5	23
4	Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5217-5225.	3.1	12
5	Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules. ACS Applied Materials & Interfaces, 2021, 13, 13022-13033.	8.0	69
6	Revisiting the Determination of the Valence Band Maximum and Defect Formation in Halide Perovskites for Solar Cells: Insights from Highly Sensitive Near–UV Photoemission Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 43540-43553.	8.0	20
7	Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi ₂ O ₄ heterojunction photoelectrodes. Chemical Science, 2020, 11, 11195-11204.	7.4	26
8	Pure CuBi ₂ O ₄ Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi ₂ O ₃ /CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 2020, 30, 1910832.	14.9	54
9	Assessment of a W:BiVO ₄ –CuBi ₂ O ₄ Tandem Photoelectrochemical Cell for Overall Solar Water Splitting. ACS Applied Materials & Interfaces, 2020, 12, 13959-13970.	8.0	50
10	Impact of intentional photo-oxidation of a donor polymer and PC ₇₀ BM on solar cell performance. Physical Chemistry Chemical Physics, 2019, 21, 22259-22271.	2.8	4
11	A Nanoscopic View of Photoinduced Charge Transfer in Organic Nanocrystalline Heterojunctions. Journal of Physical Chemistry C, 2019, 123, 25031-25041.	3.1	2
12	Deep Defect States in Wide-Band-Gap ABX ₃ Halide Perovskites. ACS Energy Letters, 2019, 4, 1150-1157.	17.4	54
13	What Limits the Open-Circuit Voltage of Bromide Perovskite-Based Solar Cells?. ACS Energy Letters, 2019, 4, 1-7.	17.4	71
14	On the influence of multiple cations on the in-gap states and phototransport properties of iodide-based halide perovskites. Physical Chemistry Chemical Physics, 2018, 20, 24444-24452.	2.8	22
15	Can we use <i>time-resolved</i> measurements to get <i>steady-state</i> transport data for halide perovskites?. Journal of Applied Physics, 2018, 124, .	2.5	39
16	CsPbBr ₃ and CH ₃ NH ₃ PbBr ₃ promote visible-light photo-reactivity. Physical Chemistry Chemical Physics, 2018, 20, 16847-16852.	2.8	4
17	Control over Selfâ€Đoping in High Band Gap Perovskite Films. Advanced Energy Materials, 2018, 8, 1800398.	19.5	23
18	What Is the Mechanism of MAPbI ₃ p-Doping by I ₂ ? Insights from Optoelectronic Properties. ACS Energy Letters, 2017, 2, 2408-2414.	17.4	68

Igal Levine

#	ARTICLE	IF	CITATIONS
19	How to Avoid Artifacts in Surface Photovoltage Measurements: A Case Study with Halide Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2941-2943.	4.6	9
20	Mobility–Lifetime Products in MAPbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 5219-5226.	4.6	55
21	Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI ₃ Solar Cells. Journal of Physical Chemistry C, 2016, 120, 16399-16411.	3.1	118
22	High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic–Inorganic Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 31491-31499.	8.0	151
23	Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. Journal of Physical Chemistry Letters, 2016, 7, 167-172.	4.6	833
24	Impedance Spectroscopic Indication for Solid State Electrochemical Reaction in (CH ₃ NH ₃)PbI ₃ Films. Journal of Physical Chemistry Letters, 2016, 7, 191-197.	4.6	81
25	Light-Induced Increase of Electron Diffusion Length in a p–n Junction Type CH ₃ NH ₃ PbBr ₃ Perovskite Solar Cell. Journal of Physical Chemistry Letters, 2015, 6, 2469-2476.	4.6	91
26	Epitaxial two dimensional aluminum films on silicon (111) by ultra-fast thermal deposition. Journal of Applied Physics, 2012, 111, 124320.	2.5	18
27	Molecular Length, Monolayer Density, and Charge Transport: Lessons from Al–AlOx/Alkyl–Phosphonate/Hg Junctions. Langmuir, 2012, 28, 404-415.	3.5	64