Gerlinda E Hermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7374677/publications.pdf

Version: 2024-02-01

78 papers

3,892 citations

34 h-index 61 g-index

78 all docs

78 docs citations

78 times ranked 2967 citing authors

#	Article	IF	CITATIONS
1	Dynamin-related protein 1 regulates substrate oxidation in skeletal muscle by stabilizing cellular and mitochondrial calcium dynamics. Journal of Biological Chemistry, 2021, 297, 101196.	3.4	8
2	Evidence that hindbrain astrocytes in the rat detect low glucose with a glucose transporter 2-phospholipase C-calcium release mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R38-R48.	1.8	13
3	Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii. Journal of Neurophysiology, 2020, 123, 2122-2135.	1.8	9
4	Thrombin action on astrocytes in the hindbrain of the rat disrupts glycemic and respiratory control. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R1068-R1077.	1.8	2
5	Dorsal vagal complex and hypothalamic glia differentially respond to leptin and energy balance dysregulation. Translational Psychiatry, 2020, 10, 90.	4.8	15
6	Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 318, R545-R564.	1.8	8
7	Hindbrain astrocytes and glucose counter-regulation. Physiology and Behavior, 2019, 204, 140-150.	2.1	12
8	Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R153-R164.	1.8	22
9	Thrombin action on NST astrocytes disrupts glycemic and respiratory control. FASEB Journal, 2018, 32,	0.5	1
10	Glucoprivic sensitivity of hindbrain catecholamine neurons is astrocyteâ€dependent. FASEB Journal, 2018, 32, 738.2.	0.5	0
11	Hindbrain cytoglucopenia-induced increases in systemic blood glucose levels by 2-deoxyglucose depend on intact astrocytes and adenosine release. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1102-R1108.	1.8	18
12	Astrocytes Regulate GLP-1 Receptor-Mediated Effects on Energy Balance. Journal of Neuroscience, 2016, 36, 3531-3540.	3.6	92
13	NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract. Brain Research, 2015, 1595, 84-91.	2.2	9
14	PAR1-Activated Astrocytes in the Nucleus of the Solitary Tract Stimulate Adjacent Neurons via NMDA Receptors. Journal of Neuroscience, 2015, 35, 776-785.	3.6	48
15	IL-1β reciprocally regulates chemokine and insulin secretion in pancreatic β-cells via NF-κB. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E715-E726.	3.5	66
16	Hindbrain Glucoprivation Effects on Gastric Vagal Reflex Circuits and Gastric Motility in the Rat Are Suppressed by the Astrocyte Inhibitor Fluorocitrate. Journal of Neuroscience, 2014, 34, 10488-10496.	3.6	25
17	Artemisia santolinifolia enhances glutamatergic neurotransmission in the nucleus of the solitary tract. Neuroscience Letters, 2014, 582, 115-119.	2.1	2
18	St. John's Wort enhances the synaptic activity of the nucleus of the solitary tract. Nutrition, 2014, 30, S37-S42.	2.4	14

#	Article	IF	CITATIONS
19	CXCL12 sensitizes vago-vagal reflex neurons in the dorsal medulla. Brain Research, 2013, 1492, 46-52.	2.2	3
20	Astrocytes in the hindbrain detect glucoprivation and regulate gastric motility. Autonomic Neuroscience: Basic and Clinical, 2013, 175, 61-69.	2.8	27
21	Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis. Frontiers in Neuroscience, 2013, 7, 249.	2.8	42
22	Tumor Necrosis Factor Activation of Vagal Afferent Terminal Calcium Is Blocked by Cannabinoids. Journal of Neuroscience, 2012, 32, 5237-5241.	3.6	20
23	Systemic cholecystokinin amplifies vagoâ€vagal reflex responses recorded in vagal motor neurones. Journal of Physiology, 2012, 590, 631-646.	2.9	6
24	Brainstem Control of the Gastric Function. , 2012, , 861-891.		13
25	Leptin amplifies the action of thyrotropin-releasing hormone in the solitary nucleus: an in vitro calcium imaging study. Brain Research, 2011, 1385, 47-55.	2.2	13
26	Hydrogen sulfide augments synaptic neurotransmission in the nucleus of the solitary tract. Journal of Neurophysiology, 2011, 106, 1822-1832.	1.8	48
27	Vagal Afferent Stimulation Activates Astrocytes in the Nucleus of the Solitary Tract Via AMPA Receptors: Evidence of an Atypical Neural–Glial Interaction in the Brainstem. Journal of Neuroscience, 2011, 31, 14037-14045.	3.6	64
28	Co-localization of TRHR1 and LepRb receptors on neurons in the hindbrain of the rat. Brain Research, 2010, 1355, 70-85.	2.2	28
29	Proteinase-Activated Receptors in the Nucleus of the Solitary Tract: Evidence for Glial–Neural Interactions in Autonomic Control of the Stomach. Journal of Neuroscience, 2009, 29, 9292-9300.	3.6	54
30	Dopamine Inhibits N-Type Channels in Visceral Afferents to Reduce Synaptic Transmitter Release Under Normoxic and Chronic Intermittent Hypoxic Conditions. Journal of Neurophysiology, 2009, 101, 2270-2278.	1.8	36
31	TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: Implications for autonomic control. Brain Research, 2009, 1273, 72-82.	2.2	36
32	Leptin "gates―thermogenic action of thyrotropin-releasing hormone in the hindbrain. Brain Research, 2009, 1295, 135-141.	2.2	26
33	CXCR4 receptors in the dorsal medulla: implications for autonomic dysfunction. European Journal of Neuroscience, 2008, 27, 855-864.	2.6	13
34	Donald Novin. Appetite, 2008, 51, 417-418.	3.7	0
35	Mechanisms of action of CCK to activate central vagal afferent terminals. Peptides, 2008, 29, 1716-1725.	2.4	43
36	TNF α: A Trigger of Autonomic Dysfunction. Neuroscientist, 2008, 14, 53-67.	3 . 5	56

#	Article	IF	CITATIONS
37	BRAINSTEM CIRCUITS REGULATING GASTRIC FUNCTION. Annual Review of Physiology, 2006, 68, 279-305.	13.1	426
38	Live-cell imaging methods for the study of vagal afferents within the nucleus of the solitary tract. Journal of Neuroscience Methods, 2006, 150, 47-58.	2.5	28
39	Leptin and thyrotropin-releasing hormone: Cooperative action in the hindbrain to activate brown adipose thermogenesis. Brain Research, 2006, 1117, 118-124.	2.2	30
40	Stress and the colon: central-vagal or direct peripheral effect of CRF?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1535-R1536.	1.8	4
41	Esophageal-gastric relaxation reflex in rat: dual control of peripheral nitrergic and cholinergic transmission. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1570-R1576.	1.8	25
42	Tumor Necrosis Factor Potentiates Central Vagal Afferent Signaling by Modulating Ryanodine Channels. Journal of Neuroscience, 2006, 26, 12642-12646.	3.6	31
43	Brainstem Control of Gastric Function. , 2006, , 851-875.		8
44	\hat{l} ±-1 adrenergic input to solitary nucleus neurones: calcium oscillations, excitation and gastric reflex control. Journal of Physiology, 2005, 562, 553-568.	2.9	37
45	Norepinephrine effects on identified neurons of the rat dorsal motor nucleus of the vagus. American Journal of Physiology - Renal Physiology, 2004, 286, G333-G339.	3.4	38
46	TNFÎ \pm -p55 receptors: medullary brainstem immunocytochemical localization in normal and vagus nerve-transected rats. Brain Research, 2004, 1004, 156-166.	2.2	18
47	Immunocytochemical localization of TNF type 1 and type 2 receptors in the rat spinal cord. Brain Research, 2004, 1025, 210-219.	2.2	44
48	TNFα-stimulation of cFos-activation of neurons in the solitary nucleus is suppressed by TNFR:Fc adsorbant construct in the dorsal vagal complex. Brain Research, 2003, 976, 69-74.	2.2	18
49	Descending spinal projections from the rostral gigantocellular reticular nuclei complex. Journal of Comparative Neurology, 2003, 455, 210-221.	1.6	53
50	Involvement of adrenoceptors in brainstem circuits controlling the receptive relaxation reflex. Gastroenterology, 2003, 124, A613.	1.3	0
51	III. Activity-dependent plasticity in vago-vagal reflexes controlling the stomach. American Journal of Physiology - Renal Physiology, 2003, 284, G180-G187.	3.4	73
52	Chapter 4 Cell death in models of spinal cord injury. Progress in Brain Research, 2002, 137, 37-47.	1.4	387
53	LPS-induced suppression of gastric motility relieved by TNFR:Fc construct in dorsal vagal complex. American Journal of Physiology - Renal Physiology, 2002, 283, G634-G639.	3.4	35
54	Tumor necrosis factor- \hat{l}_{\pm} inhibits physiologically identified dorsal motor nucleus neurons in vivo. Brain Research, 2002, 951, 311-315.	2.2	34

#	Article	IF	CITATIONS
55	In vitro and in vivo analysis of the Effects of corticotropin releasing factor on rat dorsal vagal complex. Journal of Physiology, 2002, 543, 135-146.	2.9	75
56	Tumor Necrosis Factor-α Induces cFOS and Strongly Potentiates Glutamate-Mediated Cell Death in the Rat Spinal Cord. Neurobiology of Disease, 2001, 8, 590-599.	4.4	181
57	TNF- \hat{l} ±-induced c-Fos generation in the nucleus of the solitary tract is blocked by NBQX and MK-801. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R1394-R1400.	1.8	34
58	TNF- $\hat{l}\pm$ activates solitary nucleus neurons responsive to gastric distension. American Journal of Physiology - Renal Physiology, 2000, 279, G582-G586.	3 . 4	65
59	Induction of endogenous tumor necrosis factor- $\hat{l}\pm$: suppression of centrally stimulated gastric motility. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R59-R68.	1.8	25
60	Descending projections from the nucleus raphe obscurus to pudendal motoneurons in the male rat. , 1998, 397, 458-474.		28
61	Vagal control of digestion: Modulation by central neural and peripheral endocrine factors. Neuroscience and Biobehavioral Reviews, 1996, 20, 57-66.	6.1	112
62	Tumor Necrosis Factor-Alpha in the Dorsal Vagal Complex Suppresses Gastric Motility. NeuroImmunoModulation, 1995, 2, 74-81.	1.8	60
63	Stress-induced changes attributable to the sympathetic nervous system during experimental influenza viral infection in DBA/2 inbred mouse strain. Journal of Neuroimmunology, 1994, 53, 173-180.	2.3	50
64	Kinetics of glucocorticoid response to restraint stress and/or experimental influenza viral infection in two inbred strains of mice. Journal of Neuroimmunology, 1994, 49, 25-33.	2.3	84
65	Mechanisms of action of long-acting analogs of somatostatin. Regulatory Peptides, 1993, 44, 285-295.	1.9	21
66	Restraint stress differentially affects the pathogenesis of an experimental influenza viral infection in three inbred strains of mice. Journal of Neuroimmunology, 1993, 47, 83-93.	2.3	70
67	Modulation of IgA synthesis by neuroendocrine peptides. Trends in Endocrinology and Metabolism, 1991, 2, 68-72.	7.1	8
68	Activation of the bed nucleus of the stria terminalis increases gastric motility in the rat. Journal of the Autonomic Nervous System, 1990, 30, 123-128.	1.9	19
69	Thyrotropin-releasing hormone: effects on identified neurons of the dorsal vagal complex. Journal of the Autonomic Nervous System, 1989, 26, 107-112.	1.9	85
70	Nucleus raphe obscurus (nRO) influences vagal control of gastric motility in rats. Brain Research, 1989, 486, 181-184.	2.2	52
71	Dorsal medullary serotonin and gastric motility: enhancement of effects by thyrotropin-releasing hormone. Journal of the Autonomic Nervous System, 1988, 25, 35-40.	1.9	34
72	Oxytocin, oxytocin antagonist, TRH, and hypothalamic paraventricular nucleus stimulation effects on gastric motility. Peptides, 1987, 8, 505-513.	2.4	165

#	Article	IF	CITATION
73	Hypothalamic paraventricular nucleus stimulation-induced gastric acid secretion and bradycardia suppressed by oxytocin antagonist. Peptides, 1986, 7, 695-700.	2.4	73
74	Dorsal medullary oxytocin, vasopressin, oxytocin antagonist, and TRH effects on gastric acid secretion and heart rate. Peptides, 1985, 6, 1143-1148.	2.4	114
75	Convergence of vagal and gustatory afferent input within the parabrachial nucleus of the rat. Journal of the Autonomic Nervous System, 1985, 13, 1-17.	1.9	174
76	Projection of the hepatic branch of the splanchnic nerve to the brainstem of the rat. Journal of the Autonomic Nervous System, 1984, 11, 223-225.	1.9	15
77	Hepatic-vagal and gustatory afferent interactions in the brainstem of the rat. Journal of the Autonomic Nervous System, 1983, 9, 477-495.	1.9	68
78	Central connections of the hepatic branch of the vagus nerve: a horseradish peroxidase histochemical study. Journal of the Autonomic Nervous System, 1983, 7, 165-174.	1.9	99