
undefined Kenry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7374605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 2017, 70, 1-17.	11.8	587
2	Enhancing the performance of pure organic room-temperature phosphorescent luminophores. Nature Communications, 2019, 10, 2111.	5.8	525
3	Recent Advances of Optical Imaging in the Second Nearâ€Infrared Window. Advanced Materials, 2018, 30, e1802394.	11.1	503
4	Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems and Nanoengineering, 2016, 2, 16043.	3.4	385
5	Metal–Organicâ€Frameworkâ€Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. Advanced Materials, 2018, 30, e1706831.	11.1	242
6	When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials, 2018, 155, 236-250.	5.7	232
7	Polymerization-Enhanced Photosensitization. CheM, 2018, 4, 1937-1951.	5.8	227
8	A Lightâ€Up Probe with Aggregationâ€Induced Emission for Realâ€Time Bioâ€orthogonal Tumor Labeling and Imageâ€Guided Photodynamic Therapy. Angewandte Chemie - International Edition, 2018, 57, 10182-10186.	7.2	160
9	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2020, 59, 632-636.	7.2	154
10	Recent Advances in Biodegradable Conducting Polymers and Their Biomedical Applications. Biomacromolecules, 2018, 19, 1783-1803.	2.6	149
11	Biocompatible conjugated polymer nanoparticles for highly efficient photoacoustic imaging of orthotopic brain tumors in the second near-infrared window. Materials Horizons, 2017, 4, 1151-1156.	6.4	129
12	Metal–Organic Framework as a Simple and General Inert Nanocarrier for Photosensitizers to Implement Activatable Photodynamic Therapy. Advanced Functional Materials, 2018, 28, 1707519.	7.8	115
13	Cell-Assembled Graphene Biocomposite for Enhanced Chondrogenic Differentiation. Small, 2015, 11, 963-969.	5.2	109
14	Visualization and Inâ€Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angewandte Chemie - International Edition, 2020, 59, 9288-9292.	7.2	104
15	AlEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Science Advances, 2020, 6, eabb2712.	4.7	100
16	Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. ACS Sensors, 2016, 1, 543-551.	4.0	97
17	An AlEgenâ€Peptide Conjugate as a Phototheranostic Agent for Phagosomeâ€Entrapped Bacteria. Angewandte Chemie - International Edition, 2019, 58, 16229-16235.	7.2	94
18	Multicolor monitoring of cellular organelles by single wavelength excitation to visualize the mitophagy process. Chemical Science, 2018, 9, 2756-2761.	3.7	92

UNDEFINED KENRY

#	Article	IF	CITATIONS
19	Emergence of microfluidic wearable technologies. Lab on A Chip, 2016, 16, 4082-4090.	3.1	89
20	Bio-orthogonal Click Chemistry for InÂVivo Bioimaging. Trends in Chemistry, 2019, 1, 763-778.	4.4	81
21	Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. Small, 2016, 12, 1593-1604.	5.2	77
22	Reactivity-Based Organic Theranostic Bioprobes. Accounts of Chemical Research, 2019, 52, 3051-3063.	7.6	73
23	Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires. Progress in Materials Science, 2013, 58, 705-748.	16.0	71
24	Biocompatibility and Nanotoxicity of Layered Twoâ€Dimensional Nanomaterials. ChemNanoMat, 2017, 3, 5-16.	1.5	69
25	Molecular interactions of graphene oxide with human blood plasma proteins. Nanoscale, 2016, 8, 9425-9441.	2.8	67
26	Highly Sensitive and Selective Aptamer-Based Fluorescence Detection of a Malarial Biomarker Using Single-Layer MoS ₂ Nanosheets. ACS Sensors, 2016, 1, 1315-1321.	4.0	64
27	Selective Accelerated Proliferation of Malignant Breast Cancer Cells on Planar Graphene Oxide Films. ACS Nano, 2016, 10, 3424-3434.	7.3	60
28	Highly sensitive reduced graphene oxide microelectrode array sensor. Biosensors and Bioelectronics, 2015, 65, 265-273.	5.3	58
29	AlN nanowires: synthesis, physical properties, and nanoelectronics applications. Journal of Materials Science, 2012, 47, 5341-5360.	1.7	57
30	Theranostic Nanodots with Aggregation-Induced Emission Characteristic for Targeted and Image-Guided Photodynamic Therapy of Hepatocellular Carcinoma. Theranostics, 2019, 9, 1264-1279.	4.6	56
31	Mechanistic Understanding of the Biological Responses to Polymeric Nanoparticles. ACS Nano, 2020, 14, 4509-4522.	7.3	55
32	Microfluidics for research and applications in oncology. Analyst, The, 2016, 141, 504-524.	1.7	54
33	A Lightâ€Up Probe with Aggregationâ€Induced Emission for Realâ€Time Bioâ€orthogonal Tumor Labeling and Imageâ€Guided Photodynamic Therapy. Angewandte Chemie, 2018, 130, 10339-10343.	1.6	52
34	One-step <i>in vivo</i> metabolic labeling as a theranostic approach for overcoming drug-resistant bacterial infections. Materials Horizons, 2020, 7, 1138-1143.	6.4	49
35	Catalyst: Aggregation-Induced Emission—How Far Have We Come, and Where Are We Going Next?. CheM, 2020, 6, 1195-1198.	5.8	46
36	Molecular Hemocompatibility of Graphene Oxide and Its Implication for Antithrombotic Applications. Small, 2015, 11, 5105-5117.	5.2	45

UNDEFINED KENRY

#	Article	IF	CITATIONS
37	Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics, 2018, 12, 024103.	1.2	43
38	Nanostructural Control Enables Optimized Photoacoustic–Fluorescence–Magnetic Resonance Multimodal Imaging and Photothermal Therapy of Brain Tumor. Advanced Functional Materials, 2020, 30, 1907077.	7.8	41
39	A dual-rotator fluorescent probe for analyzing the viscosity of mitochondria and blood. Chemical Communications, 2021, 57, 3508-3511.	2.2	41
40	Aggregation-Induced Emission Probe for Specific Turn-On Quantification of Soluble Transferrin Receptor: An Important Disease Marker for Iron Deficiency Anemia and Kidney Diseases. Analytical Chemistry, 2018, 90, 1154-1160.	3.2	38
41	2-Styrylquinoline-based two-photon AlEgens for dual monitoring of pH and viscosity in living cells. Journal of Materials Chemistry B, 2019, 7, 7771-7775.	2.9	35
42	Bacteriumâ€Templated Polymer for Selfâ€5elective Ablation of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2020, 30, 2001338.	7.8	35
43	Paper-based MoS2 nanosheet-mediated FRET aptasensor for rapid malaria diagnosis. Scientific Reports, 2017, 7, 17510.	1.6	31
44	Simultaneous Increase in Brightness and Singlet Oxygen Generation of an Organic Photosensitizer by Nanocrystallization. Small, 2018, 14, e1803325.	5.2	31
45	Nano-bio interactions between carbon nanomaterials and blood plasma proteins: why oxygen functionality matters. NPG Asia Materials, 2017, 9, e422-e422.	3.8	29
46	Single‣ayer Ternary Chalcogenide Nanosheet as a Fluorescenceâ€Based "Captureâ€Release―Biomolecular Nanosensor. Small, 2017, 13, 1601925.	5.2	29
47	Lateâ€Stage Direct <i>o</i> â€Alkenylation of Phenols by Pd ^{II} â€Catalyzed Câ~'H Functionalization. Chemistry - A European Journal, 2019, 25, 6896-6901.	1.7	29
48	Enhancing the sensing specificity of a MoS ₂ nanosheet-based FRET aptasensor using a surface blocking strategy. Analyst, The, 2017, 142, 2570-2577.	1.7	27
49	Hydrostatic pressure promotes endothelial tube formation through aquaporin 1 and Ras-ERK signaling. Communications Biology, 2020, 3, 152.	2.0	24
50	An AlEgenâ€₽eptide Conjugate as a Phototheranostic Agent for Phagosomeâ€Entrapped Bacteria. Angewandte Chemie, 2019, 131, 16375-16381.	1.6	21
51	Bio-orthogonal click reaction-enabled highly specific in situ cellularization of tissue engineering scaffolds. Biomaterials, 2020, 230, 119615.	5.7	21
52	Understanding the hemotoxicity of graphene nanomaterials through their interactions with blood proteins and cells. Journal of Materials Research, 2018, 33, 44-57.	1.2	20
53	Membraneâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics for Combating Multidrugâ€Resistant Bacteria. Angewandte Chemie, 2020, 132, 642-646.	1.6	19
54	Largeâ€Area, Periodic, Hexagonal Wrinkles on Nanocrystalline Graphitic Film. Advanced Functional Materials, 2015, 25, 5492-5503.	7.8	16

UNDEFINED KENRY

#	Article	IF	CITATIONS
55	Viscoelastic Effects of Silicone Gels at the Micro- and Nanoscale. Procedia IUTAM, 2015, 12, 20-30.	1.2	15
56	Selective concentration-dependent manipulation of intrinsic fluorescence of plasma proteins by graphene oxide nanosheets. RSC Advances, 2016, 6, 46558-46566.	1.7	15
57	Graphene oxide inhibits malaria parasite invasion and delays parasitic growth <i>in vitro</i> . Nanoscale, 2017, 9, 14065-14073.	2.8	14
58	Visualize Embryogenesis and Cell Fate Using Fluorescent Probes with Aggregation-Induced Emission. ACS Applied Materials & Interfaces, 2019, 11, 3737-3744.	4.0	14
59	Stereoisomerization during Molecular Packing. Advanced Materials, 2021, 33, e2100986.	11.1	13
60	Enhancing the Theranostic Performance of Organic Photosensitizers with Aggregation-Induced Emission. Accounts of Materials Research, 2022, 3, 721-734.	5.9	12
61	Recent Advances in Lateâ€Stage Construction of Stapled Peptides via Câ^'H Activation. ChemBioChem, 2021, 22, 2762-2771.	1.3	11
	Pielegical Imaging: Decent Advances of Optical Imaging in the Second Nearôf-Infrared Window (Adv.) Ti ETO 0.0		worloch 10 T

Biological Imaging: Recent Advances of Optical Imaging in the Second Nearâ€Infrared Window (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

63	Visualization and Inâ€Situ Ablation of Intracellular Bacterial Pathogens through Metabolic Labeling. Angewandte Chemie, 2020, 132, 9374-9378.	1.6	8
64	Differential Collective Cell Migratory Behaviors Modulated by Phospholipid Nanocarriers. ACS Nano, 2021, 15, 17412-17425.	7.3	7
65	Differential Macrophage Responses to Gold Nanostars and Their Implication for Cancer Immunotherapy. Advanced Therapeutics, 2022, 5, .	1.6	6
66	When In Situ Techniques Meet Nickel-Based Electrocatalyst in Hydrogen Evolution Reaction. CheM, 2017, 3, 19-21.	5.8	5
67	Antibacterial Therapy: Metal–Organicâ€Frameworkâ€Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy (Adv. Mater. 18/2018). Advanced Materials, 2018, 30, 1870124.	11.1	5
68	Photodynamic Therapy: Bacteriumâ€Templated Polymer for Selfâ€Selective Ablation of Multidrugâ€Resistant Bacteria (Adv. Funct. Mater. 31/2020). Advanced Functional Materials, 2020, 30, 2070206.	7.8	2
69	Abstract 266: Differential collective cell migratory behaviors modulated by phospholipid nanoparticles. , 2021, , .		0