Morten Foss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7374563/publications.pdf

Version: 2024-02-01

218677 315739 2,911 38 26 38 citations h-index g-index papers 38 38 38 4415 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today, 2010, 5, 66-78.	11.9	514
2	Enhancement of Protein Adsorption Induced by Surface Roughness. Langmuir, 2006, 22, 10885-10888.	3.5	503
3	Fibronectin Adsorption, Cell Adhesion, and Proliferation on Nanostructured Tantalum Surfaces. ACS Nano, 2010, 4, 2874-2882.	14.6	163
4	Guidance of stem cell fate on 2D patterned surfaces. Biomaterials, 2012, 33, 6626-6633.	11.4	154
5	Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D. Colloids and Surfaces B: Biointerfaces, 2008, 66, 53-59.	5.0	140
6	The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization. Biomaterials, 2009, 30, 2015-2022.	11.4	117
7	Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. Colloids and Surfaces B: Biointerfaces, 2005, 43, 208-215.	5.0	107
8	Fibronectin Adsorption on Tantalum: The Influence of Nanoroughness. Journal of Physical Chemistry B, 2008, 112, 8241-8249.	2.6	102
9	Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials, 2006, 27, 4529-4537.	11.4	101
10	QCM-D studies of attachment and differential spreading of pre-osteoblastic cells on Ta and Cr surfaces. Biomaterials, 2006, 27, 1346-1354.	11.4	97
11	Enhanced Surface Activation of Fibronectin upon Adsorption on Hydroxyapatite. Langmuir, 2009, 25, 2971-2978.	3.5	74
12	Fibronectin adsorption on gold, Ti-, and Ta-oxide investigated by QCM-D and RSA modelling. Journal of Colloid and Interface Science, 2008, 320, 110-116.	9.4	73
13	A combinatorial screening of human fibroblast responses on micro-structured surfaces. Biomaterials, 2010, 31, 9182-9191.	11.4	70
14	Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 85, 189-197.	5.0	60
15	Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance. Biomaterials, 2008, 29, 2581-2587.	11.4	59
16	Sulfur induced Cu4 tetramers on Cu(111). Surface Science, 1997, 388, 5-14.	1.9	54
17	Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomaterialia, 2014, 10, 641-650.	8.3	51
18	Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. Journal of Biomedical Materials Research - Part A, 2011, 99A, 94-101.	4.0	44

#	Article	IF	CITATIONS
19	Responses of fibroblasts and glial cells to nanostructured platinum surfaces. Nanotechnology, 2009, 20, 385103.	2.6	42
20	Sulfur chemisorption on Ni(111): The clock structure of the (5â^š3×2)S phase. Physical Review B, 1994, 50, 8950-8953.	3.2	41
21	Cell shape and spreading of stromal (mesenchymal) stem cells cultured on fibronectin coated gold and hydroxyapatite surfaces. Colloids and Surfaces B: Biointerfaces, 2011, 84, 18-25.	5.0	41
22	Interaction of human mesenchymal stem cells with osteopontin coated hydroxyapatite surfaces. Colloids and Surfaces B: Biointerfaces, 2010, 75, 186-193.	5.0	38
23	Influence of Nanoroughness and Detailed Surface Morphology on Structural Properties and Water-Coupling Capabilities of Surface-Bound Fibrinogen Films. Journal of Physical Chemistry C, 2009, 113, 4406-4412.	3.1	37
24	Hydroxyapatite nanoparticles in polyâ€≺scp>D, <scp>L</scp> â€lactic acid coatings on porous titanium implants conducts bone formation. Journal of Biomedical Materials Research - Part A, 2010, 95A, 665-672.	4.0	36
25	Influence of surface roughness on quartz crystal microbalance measurements in liquids. Journal of Applied Physics, 2007, 101, 114502.	2.5	35
26	Growth characteristics of inclined columns produced by Glancing Angle Deposition (GLAD) and colloidal lithography. Applied Surface Science, 2011, 257, 2226-2230.	6.1	26
27	Deuterium-induced restructuring of Cu(100). Chemical Physics Letters, 1993, 215, 535-540.	2.6	20
28	X-ray diffraction investigation of the sulphur induced 4 $\tilde{A}-1$ reconstruction of Ni(110). Surface Science, 1993, 296, 283-290.	1.9	19
29	Nanostructure of the neurocentral growth plate: Insight from scanning small angle X-ray scattering, atomic force microscopy and scanning electron microscopy. Bone, 2006, 39, 530-541.	2.9	19
30	Synthesis of Functional Nanomaterials via Colloidal Mask Templating and Glancing Angle Deposition (GLAD). Advanced Engineering Materials, 2010, 12, 899-905.	3.5	18
31	Post-treatments of polydopamine coatings influence cellular response. Colloids and Surfaces B: Biointerfaces, 2021, 207, 111972.	5.0	15
32	Interfacial Fibrin Polymerization and Fibrillation Kinetics Is Influenced by Nanoscale Roughness and Fibrinogen-Fibrin Cleavage in Solution. Journal of Physical Chemistry C, 2011, 115, 13617-13623.	3.1	10
33	Synthesis of Nano―and Microâ€6cale Topographies by Combining Colloidal Lithography and Glancing Angle Deposition (GLAD). Advanced Engineering Materials, 2015, 17, 8-13.	3.5	8
34	Investigation of particleâ€functionalized tissue engineering scaffolds using Xâ€ray tomographic microscopy. Biotechnology and Bioengineering, 2008, 100, 820-829.	3.3	6
35	Free radicals generated by tantalum implants antagonize the cytotoxic effect of doxorubicin. International Journal of Pharmaceutics, 2013, 448, 214-220.	5.2	6
36	The adsorption characteristics of osteopontin on hydroxyapatite and gold. Materials Science and Engineering C, 2011, 31, 514-522.	7.3	4

MORTEN FOSS

#	Article	IF	CITATIONS
37	Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces. Cellular and Molecular Bioengineering, 2013, 6, 199-209.	2.1	4
38	A Combinatorial Library of Microâ€Topographies and Chemical Compositions for Tailored Surface Wettability. Advanced Engineering Materials, 2011, 13, 516-524.	3.5	3