Keshi Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7373337/publications.pdf

Version: 2024-02-01

18	1,770	13	20
papers	citations	h-index	g-index
20	20	20	3166 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Epigenome-Metabolome-Epigenome signaling cascade in cell biological processes. Journal of Genetics and Genomics, 2022, 49, 279-286.	3.9	6
2	MAP2K6 remodels chromatin and facilitates reprogramming by activating Gatad2b-phosphorylation dependent heterochromatin loosening. Cell Death and Differentiation, 2022, 29, 1042-1054.	11.2	6
3	Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death and Differentiation, 2022, 29, 2316-2331.	11.2	18
4	Protocol for detecting chromatin dynamics and screening chromatin relaxer by FRAP assay. STAR Protocols, 2021, 2, 100706.	1.2	4
5	Topology-dependent, bifurcated mitochondrial quality control under starvation. Autophagy, 2020, 16, 562-574.	9.1	25
6	Heterochromatin loosening by the Oct4 linker region facilitates Klf4 binding and iPSC reprogramming. EMBO Journal, 2020, 39, e99165.	7.8	29
7	Glis1 facilitates induction of pluripotency via an epigenome–metabolome–epigenome signalling cascade. Nature Metabolism, 2020, 2, 882-892.	11.9	114
8	Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Science Advances, 2019, 5, eaax7525.	10.3	45
9	Polybrene induces neural degeneration by bidirectional Ca2+ influx-dependent mitochondrial and ER–mitochondrial dynamics. Cell Death and Disease, 2018, 9, 966.	6.3	9
10	Short-Term Mitochondrial Permeability Transition Pore Opening Modulates Histone Lysine Methylation at the Early Phase of Somatic Cell Reprogramming. Cell Metabolism, 2018, 28, 935-945.e5.	16.2	36
11	BNIP3L-dependent mitophagy accounts for mitochondrial clearance during 3 factors-induced somatic cell reprogramming. Autophagy, 2017, 13, 1543-1555.	9.1	63
12	Gadd45a opens up the promoter regions of miR-295 facilitating pluripotency induction. Cell Death and Disease, 2017, 8, e3107-e3107.	6.3	4
13	Gadd45a is a heterochromatin relaxer that enhances <scp>iPS</scp> cell generation. EMBO Reports, 2016, 17, 1641-1656.	4.5	28
14	Srebp-1 Interacts with c-Myc to Enhance Somatic Cell Reprogramming. Stem Cells, 2016, 34, 83-92.	3.2	52
15	Transient Activation of Mitoflashes Modulates Nanog at the Early Phase of Somatic Cell Reprogramming. Cell Metabolism, 2016, 23, 220-226.	16.2	28
16	Tbx3 isoforms are involved in pluripotency maintaining through distinct regulation of Nanog transcriptional activity. Biochemical and Biophysical Research Communications, 2014, 444, 411-414.	2.1	16
17	The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner. Cell Stem Cell, 2011, 9, 575-587.	11.1	407
18	Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 71-79.	11.1	878