Masoud Davari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/73732/publications.pdf

Version: 2024-02-01

471509 454955 33 939 17 30 citations h-index g-index papers 34 34 34 935 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Robust Vector Control of a Very Weak-Grid-Connected Voltage-Source Converter Considering the Phase-Locked Loop Dynamics. IEEE Transactions on Power Electronics, 2017, 32, 977-994.	7.9	149
2	Robust Multi-Objective Control of VSC-Based DC-Voltage Power Port in Hybrid AC/DC Multi-Terminal Micro-Grids. IEEE Transactions on Smart Grid, 2013, 4, 1597-1612.	9.0	108
3	Advanced Current-Limiting and Power-Sharing Control in a PV-Based Grid-Forming Inverter Under Unbalanced Grid Conditions. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1084-1096.	5.4	58
4	Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma, 2021, 385, 114858.	5.1	54
5	Dynamics and Robust Control of a Grid-Connected VSC in Multiterminal DC Grids Considering the Instantaneous Power of DC- and AC-Side Filters and DC Grid Uncertainty. IEEE Transactions on Power Electronics, 2016, 31, 1942-1958.	7.9	51
6	Reinforcement learning and non-zero-sum game output regulation for multi-player linear uncertain systems. Automatica, 2020, 112, 108672.	5.0	47
7	An Enhanced Control System for Single-Phase Inverters Interfaced With Weak and Distorted Grids. IEEE Transactions on Power Electronics, 2019, 34, 12538-12551.	7.9	43
8	Deforestation and cultivation of sparse forest impacts on soil quality (case study: West Iran, Baneh). Soil and Tillage Research, 2020, 198, 104504.	5.6	41
9	Robust Droop and DC-Bus Voltage Control for Effective Stabilization and Power Sharing in VSC Multiterminal DC Grids. IEEE Transactions on Power Electronics, 2018, 33, 4373-4395.	7.9	38
10	An Optimal Primary Frequency Control Based on Adaptive Dynamic Programming for Islanded Modernized Microgrids. IEEE Transactions on Automation Science and Engineering, 2021, 18, 1109-1121.	5.2	36
11	Data-Driven Cooperative Output Regulation of Multi-Agent Systems via Robust Adaptive Dynamic Programming. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 447-451.	3.0	35
12	Grid Integration of a Dual Two-Level Voltage-Source Inverter Considering Grid Impedance and Phase-Locked Loop. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 401-422.	5.4	30
13	Competitive adsorption-desorption reactions of two hazardous heavy metals in contaminated soils. Environmental Science and Pollution Research, 2015, 22, 13024-13032.	5.3	25
14	Simultaneous prediction of several soil properties related to engineering uses based on laboratory Vis-NIR reflectance spectroscopy. Catena, 2021, 197, 104987.	5.0	25
15	Modeling soil loss at plot scale with EUROSEM and RUSLE2 at stony soils of Khamesan watershed, Iran. Catena, 2016, 147, 773-788.	5.0	24
16	Variable-Structure-Based Nonlinear Control for the Master VSC in DC-Energy-Pool Multiterminal Grids. IEEE Transactions on Power Electronics, 2014, 29, 6196-6213.	7.9	22
17	An analytical deterministic model for simultaneous phytoremediation of Ni and Cd from contaminated soils. Environmental Science and Pollution Research, 2015, 22, 4609-4620.	5.3	20
18	Adapted nearâ€state PWM for dual twoâ€level inverters in order to reduce commonâ€mode voltage and switching losses. IET Power Electronics, 2019, 12, 676-685.	2.1	14

#	Article	IF	CITATIONS
19	A Modular Adaptive Robust Nonlinear Control for Resilient Integration of VSIs Into Emerging Modernized Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 2907-2925.	5.4	14
20	Internal Model Power Synchronization Control of a PV-Based Voltage-Source Converter in Weak-Grid and Islanded Conditions. IEEE Transactions on Sustainable Energy, 2021, 12, 1360-1371.	8.8	14
21	A Novel More Electric Aircraft Power System Rectifier Based on a Low-Rating Autotransformer. IEEE Transactions on Transportation Electrification, 2022, 8, 649-659.	7.8	13
22	A Multivariable Controller in Synchronous Frame Integrating Phase-Locked Loop to Enhance Performance of Three-Phase Grid-Connected Inverters in Weak Grids. IEEE Transactions on Power Electronics, 2022, 37, 10348-10359.	7.9	11
23	A Fault-Tolerant, Passivity-Based Controller Enhanced by the Equilibrium-to-Equilibrium Maneuver Capability for the DC-Voltage Power Port VSC in Multi-Infeed AC/DC Modernized Grids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 2484-2507.	5.4	10
24	Adaptive, Optimal, Virtual Synchronous Generator Control of Three-Phase Grid-Connected Inverters Under Different Grid Conditions—An Adaptive Dynamic Programming Approach. IEEE Transactions on Industrial Informatics, 2022, 18, 7388-7399.	11.3	10
25	A Novel IGDT-Based Method to Find the Most Susceptible Points of Cyberattack Impacting Operating Costs of VSC-Based Microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3695-3714.	5.4	8
26	An Innovative Event-Based Filtering Scheme Using \${oldsymbol{H}}_{infty}\$ Performance for Stochastic LTI Systems Considering A Practical Application in Smart Modernized Microgrids. IEEE Access, 2019, 7, 48138-48150.	4.2	7
27	Detailed Dynamic DC Models of VSC Considering Controls for DC-Fault Simulations in Modernized Microgrid Protection. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 4514-4532.	5.4	7
28	An Innovative, Adaptive Faulty Signal Rectifier Along with a Switching Controller for Reliable Primary Control of GC-VSIs in CPS-Based Modernized Microgrids. IEEE Transactions on Power Electronics, 2021, 36, 8370-8387.	7.9	6
29	Fault-Tolerant, Distributed Control for Emerging, VSC-Based, Islanded Microgrids—An Approach Based on Simultaneous Passive Fault Detection. IEEE Access, 2022, 10, 10995-11010.	4.2	5
30	Analysing dynamics and synthesising a robust vector control for the dcâ€voltage power port based on the modular multilevel converter in multiâ€infeed AC/DC smart grids. IET Smart Grid, 2019, 2, 645-658.	2.2	4
31	A Novel, Software-Defined Control Method Using Sparsely Activated Microcontroller for Low-Power, Multiple-Input, Single-Inductor, Multiple-Output DC–DC Converters to Increase Efficiency. IEEE Transactions on Industrial Electronics, 2023, 70, 2959-2970.	7.9	4
32	Dynamics of an industrial power amplifier for evaluating PHIL testing accuracy: An experimental approach via linear system identification methods. , $2018, \ldots$		3
33	An optimization Approach Based on the Interior-Point Methodology for the Tertiary Control of Modernized Microgrids. , 2019, , .		1