Steve Brocchini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372824/publications.pdf

Version: 2024-02-01

218677 223800 2,263 48 26 46 citations g-index h-index papers 49 49 49 2924 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nature Biotechnology, 2004, 22, 977-984.	17.5	313
2	Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nature Chemical Biology, 2006, 2, 312-313.	8.0	246
3	Disulfide bridge based PEGylation of proteins. Advanced Drug Delivery Reviews, 2008, 60, 3-12.	13.7	170
4	Site-Specific PEGylation of Protein Disulfide Bonds Using a Three-Carbon Bridge. Bioconjugate Chemistry, 2007, 18, 61-76.	3.6	152
5	Principles of pharmacology in the eye. British Journal of Pharmacology, 2017, 174, 4205-4223.	5.4	137
6	PEGylation of native disulfide bonds in proteins. Nature Protocols, 2006, 1, 2241-2252.	12.0	110
7	Site-Specific PEGylation at Histidine Tags. Bioconjugate Chemistry, 2012, 23, 248-263.	3.6	68
8	Molecular Modeling to Study Dendrimers for Biomedical Applications. Molecules, 2014, 19, 20424-20467.	3.8	66
9	The PK-Eye: A Novel In Vitro Ocular Flow Model for Use in Preclinical Drug Development. Journal of Pharmaceutical Sciences, 2015, 104, 3330-3342.	3.3	59
10	Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomaterialia, 2017, 64, 126-136.	8.3	59
11	Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 124, 95-103.	4.3	59
12	Comparative Binding of Disulfide-Bridged PEG-Fabs. Bioconjugate Chemistry, 2012, 23, 2262-2277.	3.6	55
13	A New Reagent for Stable Thiol-Specific Conjugation. Bioconjugate Chemistry, 2014, 25, 460-469.	3.6	48
14	An information rich biomedical polymer library. Journal of Materials Chemistry, 2003, 13, 2825-2837.	6.7	44
15	Measuring antibody coatings on gold nanoparticles by optical spectroscopy. RSC Advances, 2015, 5, 24521-24527.	3.6	43
16	Site-selective protein conjugation at histidine. Chemical Science, 2019, 10, 427-439.	7.4	42
17	A Novel Transdermal Protein Delivery Strategy via Electrohydrodynamic Coating of PLGA Microparticles onto Microneedles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 12478-12488.	8.0	42
18	Fab-PEG-Fab as a Potential Antibody Mimetic. Bioconjugate Chemistry, 2013, 24, 1870-1882.	3.6	41

#	Article	IF	CITATIONS
19	Electrospun formulations of acyclovir, ciprofloxacin and cyanocobalamin for ocular drug delivery. International Journal of Pharmaceutics, 2016, 502, 208-218.	5.2	41
20	Development of Targeted siRNA Nanocomplexes to Prevent Fibrosis in Experimental Glaucoma Filtration Surgery. Molecular Therapy, 2018, 26, 2812-2822.	8.2	36
21	3D Printed Punctal Plugs for Controlled Ocular Drug Delivery. Pharmaceutics, 2021, 13, 1421.	4.5	35
22	Injectables and Depots to Prolong Drug Action of Proteins and Peptides. Pharmaceutics, 2020, 12, 999.	4.5	32
23	Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: optimisation and cellular studies. Journal of Microencapsulation, 2015, 32, 755-768.	2.8	31
24	Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines:in vivostudies. Journal of Microencapsulation, 2015, 32, 769-783.	2.8	29
25	Sustained release ophthalmic dexamethasone: In vitro in vivo correlations derived from the PK-Eye. International Journal of Pharmaceutics, 2017, 522, 119-127.	5.2	29
26	Water-soluble polyacetals derived from diphenols. Journal of Materials Chemistry, 2005, 15, 1849.	6.7	28
27	α-Galactosylceramide and peptide-based nano-vaccine synergistically induced a strong tumor suppressive effect in melanoma. Acta Biomaterialia, 2018, 76, 193-207.	8.3	27
28	In situ antibody-loaded hydrogel for intravitreal delivery. European Journal of Pharmaceutical Sciences, 2019, 137, 104993.	4.0	27
29	Expression of soluble and active interferon consensus in SUMO fusion expression system in E. coli. Protein Expression and Purification, 2014, 99, 18-26.	1.3	24
30	Preclinical challenges for developing long acting intravitreal medicines. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 153, 130-149.	4.3	21
31	An anti-TNF- \hat{l}_{\pm} antibody mimetic to treat ocular inflammation. Scientific Reports, 2016, 6, 36905.	3.3	20
32	Comparative Study of In Situ Loaded Antibody and PEGâ€Fab NIPAAM Gels. Macromolecular Bioscience, 2018, 18, 1700255.	4.1	16
33	Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. International Journal of Nanomedicine, 2017, Volume 12, 7053-7073.	6.7	15
34	Molecular Dynamics Simulations of Proteins with Chemically Modified Disulfide Bonds. Theoretical Chemistry Accounts, 2007, 117, 259-265.	1.4	12
35	Aconityl-derived polymers for biomedical applications. Modeling study of cis-trans isomerisation. Theoretical Chemistry Accounts, 2003, 109, 206-212.	1.4	11
36	Poly(methacrylic acid) complexation of amphotericin B to treat neglected diseases. Polymer Chemistry, 2014, 5, 1037-1048.	3.9	10

#	Article	IF	CITATIONS
37	An Ilomastat-CD Eye Drop Formulation to Treat Ocular Scarring. , 2017, 58, 3425.		10
38	Comparative thermodynamic analysis in solution of a next generation antibody mimetic to VEGF. RSC Advances, 2018, 8, 35787-35793.	3.6	9
39	Disulfide–bridging PEGylation during refolding for the more efficient production of modified proteins. Biotechnology Journal, 2016, 11, 1088-1099.	3.5	8
40	Practical computational toolkits for dendrimers and dendrons structure design. Journal of Computer-Aided Molecular Design, 2017, 31, 817-827.	2.9	8
41	A simple route to functionalising electrospun polymer scaffolds with surface biomolecules. International Journal of Pharmaceutics, 2021, 597, 120231.	5.2	7
42	Inhibiting the fibrillation of a GLP-1-like peptide. International Journal of Pharmaceutics, 2020, 574, 118923.	5.2	6
43	An investigation of alkaline phosphatase enzymatic activity after electrospinning and electrospraying. Journal of Drug Delivery Science and Technology, 2021, 64, 102592.	3.0	5
44	Polymers in medicine; a game of chessâ—¾. Drug Discovery Today, 2003, 8, 111-112.	6.4	3
45	LC–MS analysis to determine the biodistribution of a polymer coated ilomastat ocular implant. Journal of Pharmaceutical and Biomedical Analysis, 2018, 157, 100-106.	2.8	2
46	Protein modification by bis-alkylation. , 2020, , 351-385.		2
47	Interferon dimers: IFN-PEG-IFN. Journal of Drug Targeting, 2017, 25, 881-890.	4.4	1
48	Dual-acting therapeutic proteins for intraocular use. Drug Discovery Today, 2021, 26, 44-55.	6.4	1