MÃ³nica V Cunha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372646/publications.pdf

Version: 2024-02-01

76

all docs

67 1,683 21 papers citations h-index

76 76 1760
docs citations times ranked citing authors

36

#	Article	IF	CITATIONS
1	When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. Science of the Total Environment, 2022, 806, 150682.	3.9	10
2	A wastewater-based epidemiology tool for COVID-19 surveillance in Portugal. Science of the Total Environment, 2022, 804, 150264.	3.9	41
3	Recovery of SARS-CoV-2 from large volumes of raw wastewater is enhanced with the inuvai R180 system. Journal of Environmental Management, 2022, 304, 114296.	3.8	6
4	Discrimination and surveillance of infectious severe acute respiratory syndrome Coronavirus 2 in wastewater using cell culture and RT-qPCR. Science of the Total Environment, 2022, 815, 152914.	3.9	18
5	The era of reference genomes in conservation genomics. Trends in Ecology and Evolution, 2022, 37, 197-202.	4.2	138
6	Antimicrobial resistance in commensal Staphylococcus aureus from wild ungulates is driven by agricultural land cover and livestock farming. Environmental Pollution, 2022, 303, 119116.	3.7	10
7	Stalking Mycobacterium bovis in the total environment: FLOW-FISH & TACS to detect, quantify, and sort metabolically active and quiescent cells in complex matrices. Journal of Hazardous Materials, 2022, 432, 128687.	6.5	5
8	A high-risk carbapenem-resistant Pseudomonas aeruginosa clone detected in red deer (Cervus elaphus) from Portugal. Science of the Total Environment, 2022, 829, 154699.	3.9	9
9	A walk on the wild side: Wild ungulates as potential reservoirs of multi-drug resistant bacteria and genes, including Escherichia coli harbouring CTX-M beta-lactamases. Environmental Pollution, 2022, 306, 119367.	3.7	8
10	Enterotoxin- and Antibiotic-Resistance-Encoding Genes Are Present in Both Coagulase-Positive and Coagulase-Negative Foodborne Staphylococcus Strains. Applied Microbiology, 2022, 2, 367-380.	0.7	6
11	The hard numbers of tuberculosis epidemiology in wildlife: A metaâ€regression and systematic review. Transboundary and Emerging Diseases, 2021, 68, 3257-3276.	1.3	17
12	Global trends of epidemiological research in livestock tuberculosis for the last four decades. Transboundary and Emerging Diseases, 2021, 68, 333-346.	1.3	18
13	Association between reproduction and immunity in the Egyptian mongoose Herpestes ichneumon is sexâ€biased and unaffected by body condition. Journal of Zoology, 2021, 313, 124-134.	0.8	1
14	Emergence and Spread of Cephalosporinases in Wildlife: A Review. Animals, 2021, 11, 1765.	1.0	28
15	Whole Genome Sequencing Refines Knowledge on the Population Structure of Mycobacterium bovis from a Multi-Host Tuberculosis System. Microorganisms, 2021, 9, 1585.	1.6	11
16	Genome-wide estimation of recombination, mutation and positive selection enlightens diversification drivers of Mycobacterium bovis. Scientific Reports, 2021, 11, 18789.	1.6	4
17	Mapping the scientific knowledge of antimicrobial resistance in food-producing animals. One Health, 2021, 13, 100324.	1.5	13
18	Emergence of colistin resistance genes (mcr-1) in Escherichia coli among widely distributed wild ungulates. Environmental Pollution, 2021, 291, 118136.	3.7	18

#	Article	IF	CITATIONS
19	The open pan-genome architecture and virulence landscape of Mycobacterium bovis. Microbial Genomics, 2021, 7, .	1.0	9
20	Polyclonal infection as a new scenario in Mycobacterium caprae epidemiology. Veterinary Microbiology, 2020, 240, 108533.	0.8	15
21	Wild boar as a reservoir of antimicrobial resistance. Science of the Total Environment, 2020, 717, 135001.	3.9	46
22	An effective culturomics approach to study the gut microbiota of mammals. Research in Microbiology, 2020, 171, 290-300.	1.0	9
23	Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms, 2020, 8, 1380.	1.6	32
24	Long-term molecular surveillance provides clues on a cattle origin for Mycobacterium bovis in Portugal. Scientific Reports, 2020, 10, 20856.	1.6	17
25	Temporal and geographical research trends of antimicrobial resistance in wildlife - A bibliometric analysis. One Health, 2020, 11, 100198.	1.5	44
26	Estimates of the global and continental burden of animal tuberculosis in key livestock species worldwide: A meta-analysis study. One Health, 2020, 10, 100169.	1.5	14
27	Revisiting the expression signature of pks15/1 unveils regulatory patterns controlling phenolphtiocerol and phenolglycolipid production in pathogenic mycobacteria. PLoS ONE, 2020, 15, e0229700.	1.1	4
28	The Gut Microbiota of the Egyptian Mongoose as an Early Warning Indicator of Ecosystem Health in Portugal. International Journal of Environmental Research and Public Health, 2020, 17, 3104.	1.2	3
29	Animal tuberculosis: impact of disease heterogeneity in transmission, diagnosis, and control. Transboundary and Emerging Diseases, 2020, 67, 1828.	1.3	16
30	Egyptian Mongoose (Herpestes ichneumon) Gut Microbiota: Taxonomical and Functional Differences across Sex and Age Classes. Microorganisms, 2020, 8, 392.	1.6	8
31	Crosstalk Between Culturomics and Microbial Profiling of Egyptian Mongoose (Herpestes ichneumon) Gut Microbiome. Microorganisms, 2020, 8, 808.	1.6	5
32	Molecular detection and characterization of Leishmania infantum in free-ranging Egyptian mongoose (Herpestes ichneumon). International Journal for Parasitology: Parasites and Wildlife, 2020, 11, 158-162.	0.6	5
33	Ecological drivers of Mycobacterium avium subsp. paratuberculosis detection in mongoose (Herpestes ichneumon) using IS900 as proxy. Scientific Reports, 2020, 10, 860.	1.6	11
34	Antimicrobial Resistance and Ecology: A Dialog Yet to Begin. EcoHealth, 2019, 16, 402-403.	0.9	5
35	Sex and season explain spleen weight variation in the Egyptian mongoose. Environmental Epigenetics, 2019, 65, 11-20.	0.9	6
36	Blood collection from the external jugular vein of Oryctolagus cuniculus algirus sedated with midazolam: live sampling of a subspecies at risk. Wildlife Biology, 2019, 2019, .	0.6	2

#	Article	IF	Citations
37	Urban wild boars prefer fragmented areas with food resources near natural corridors. Science of the Total Environment, 2018, 615, 282-288.	3.9	95
38	Diet footprint of Egyptian mongoose along ecological gradients: effects of primary productivity and life history traits. Mammalian Biology, 2018, 88, 16-25.	0.8	12
39	Carriage of antibiotic-resistant bacteria in urban versus rural wild boars. European Journal of Wildlife Research, 2018, 64, 1.	0.7	14
40	Exposure of Threatened Accipitridae to Mycobacterium bovis Calls for Active Surveillance. EcoHealth, 2017, 14, 310-317.	0.9	4
41	Geographic variation and sexual dimorphism in body size of the Egyptian mongoose, Herpestes ichneumon in the western limit of its European distribution. Zoologischer Anzeiger, 2016, 264, 1-10.	0.4	12
42	Implementation of a Zebrafish Health Program in a Research Facility: A 4-Year Retrospective Study. Zebrafish, 2016, 13, S-115-S-126.	0.5	31
43	Coxiella burnetii DNA detected in domestic ruminants and wildlife from Portugal. Veterinary Microbiology, 2015, 180, 136-141.	0.8	20
44	<i>Escherichia coli</i> O157:H7 in wild boars (<i>Sus scrofa</i>) and Iberian ibex (<i>Capra) Tj ETQq0 0 0 rgBT /0 Veterinary Quarterly, 2015, 35, 102-106.</i>	Overlock 1 3.0	0 Tf 50 467 ⁻ 22
45	Overview and Challenges of Molecular Technologies in the Veterinary Microbiology Laboratory. Methods in Molecular Biology, 2015, 1247, 3-17.	0.4	3
46	Characterization of Campylobacter jejuni and Campylobacter coli Genotypes in Poultry Flocks by Restriction Fragment Length Polymorphism (RFLP) Analysis. Methods in Molecular Biology, 2015, 1247, 311-321.	0.4	1
47	Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) Analysis of Members of the Mycobacterium tuberculosis Complex. Methods in Molecular Biology, 2015, 1247, 373-389.	0.4	8
48	Pre-Multidrug-Resistant Mycobacterium tuberculosis Beijing Strain Associated with Disseminated Tuberculosis in a Pet Dog. Journal of Clinical Microbiology, 2014, 52, 354-356.	1.8	12
49	Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Veterinary Microbiology, 2013, 167, 686-689.	0.8	42
50	Enhanced Detection of Tuberculous Mycobacteria in Animal Tissues Using a Semi-Nested Probe-Based Real-Time PCR. PLoS ONE, 2013, 8, e81337.	1.1	35
51	Snapshot of Viral Infections in Wild Carnivores Reveals Ubiquity of Parvovirus and Susceptibility of Egyptian Mongoose to Feline Panleukopenia Virus. PLoS ONE, 2013, 8, e59399.	1.1	45
52	Comparative Genotypic and Antimicrobial Susceptibility Analysis of Zoonotic Campylobacter Species Isolated from Broilers in a Nationwide Survey, Portugal. Journal of Food Protection, 2012, 75, 2100-2109.	0.8	10
53	Implications and challenges of tuberculosis in wildlife ungulates in Portugal: A molecular epidemiology perspective. Research in Veterinary Science, 2012, 92, 225-235.	0.9	39
54	Effect of Cattle on Salmonella Carriage, Diversity and Antimicrobial Resistance in Free-Ranging Wild Boar (Sus scrofa) in Northeastern Spain. PLoS ONE, 2012, 7, e51614.	1.1	42

#	Article	IF	Citations
55	European 2 $\hat{a} \in \mathbb{C}$ A clonal complex of Mycobacterium bovis dominant in the Iberian Peninsula. Infection, Genetics and Evolution, 2012, 12, 866-872.	1.0	74
56	Multihost Tuberculosis: Insights from the Portuguese Control Program. Veterinary Medicine International, 2011, 2011, 1-10.	0.6	15
57	Diet quality and immunocompetence influence parasite load of roe deer in a fragmented landscape. European Journal of Wildlife Research, 2011, 57, 639-645.	0.7	18
58	Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central-East Portugal. European Journal of Wildlife Research, 2011, 57, 1189-1201.	0.7	30
59	MIRU-VNTR typing adds discriminatory value to groups of Mycobacterium bovis and Mycobacterium caprae strains defined by spoligotyping. Veterinary Microbiology, 2010, 143, 299-306.	0.8	45
60	Snapshot of <i>Mycobacterium bovis</i> and <i>Mycobacterium caprae</i> Infections in Livestock in an Area with a Low Incidence of Bovine Tuberculosis. Journal of Clinical Microbiology, 2010, 48, 4337-4339.	1.8	17
61	Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. European Journal of Clinical Microbiology and Infectious Diseases, 2008, 27, 1101-1111.	1.3	71
62	The clinical course of Burkholderia cepacia complex bacteria respiratory infection in cystic fibrosis patients. Revista Portuguesa De Pneumologia, 2008, 14, 5-26.	0.7	8
63	Exceptionally High Representation of Burkholderia cepacia among B. cepacia Complex Isolates Recovered from the Major Portuguese Cystic Fibrosis Center. Journal of Clinical Microbiology, 2007, 45, 1628-1633.	1.8	44
64	Studies on the Involvement of the Exopolysaccharide Produced by Cystic Fibrosis-Associated Isolates of the Burkholderia cepacia Complex in Biofilm Formation and in Persistence of Respiratory Infections. Journal of Clinical Microbiology, 2004, 42, 3052-3058.	1.8	117
65	Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochemical and Biophysical Research Communications, 2003, 312, 323-333.	1.0	76
66	Molecular Analysis of Burkholderia cepacia Complex Isolates from a Portuguese Cystic Fibrosis Center: a 7-Year Study. Journal of Clinical Microbiology, 2003, 41, 4113-4120.	1.8	77
67	Antimicrobial Resistance in Wild Boar in Europe: Present Knowledge and Future Challenges. , 0, , 437-444.		3