Wei-Tao Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372471/publications.pdf Version: 2024-02-01

<u> Μει-Τλο Μιι</u>

#	Article	IF	CITATIONS
1	Investigation on the evaporation and dispersion of human respiratory droplets with COVID-19 virus. International Journal of Multiphase Flow, 2022, 147, 103904.	3.4	7
2	Secondary atomization of non-Newtonian kerosene gel at low Weber numbers: A numerical study. Aerospace Science and Technology, 2022, 120, 107280.	4.8	3
3	Active control for the flow around various geometries through deep reinforcement learning. Fluid Dynamics Research, 2022, 54, 015510.	1.3	3
4	Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil. Physics of Fluids, 2022, 34, .	4.0	26
5	Accelerating and improving deep reinforcement learning-based active flow control: Transfer training of policy network. Physics of Fluids, 2022, 34, .	4.0	10
6	Influence of shear rate and surface chemistry on thrombus formation in micro-crevice. Journal of Biomechanics, 2021, 121, 110397.	2.1	4
7	Study on the Law of Pseudo-Cavitation on Superhydrophobic Surface in Turbulent Flow Field of Backward-Facing Step. Fluids, 2021, 6, 200.	1.7	9
8	On the Optimization of a Centrifugal Maglev Blood Pump Through Design Variations. Frontiers in Physiology, 2021, 12, 699891.	2.8	28
9	Anisotropic heat transfer of ferro-nanofluid in partially heated rectangular enclosures under magnetic field. Case Studies in Thermal Engineering, 2021, 26, 101145.	5.7	6
10	A Continuum Model for the Unfolding of von Willebrand Factor. Annals of Biomedical Engineering, 2021, 49, 2646-2658.	2.5	10
11	Large eddy simulation as a fast and accurate engineering approach for the simulation of rotary blood pumps. International Journal of Artificial Organs, 2021, 44, 887-899.	1.4	9
12	Natural convection and anisotropic heat transfer of shear-thinning ferro-nanofluid in partially heated rectangular enclosures under magnetic field. Thermal Science and Engineering Progress, 2021, 25, 100992.	2.7	3
13	Modeling on Effect of Particle Sediment on Fluid Flow and Heat Transfer of Solid–Fluid Suspension. Energies, 2021, 14, 487.	3.1	1
14	Active control for enhancing vortex induced vibration of a circular cylinder based on deep reinforcement learning. Physics of Fluids, 2021, 33, .	4.0	21
15	Data-driven modeling of geometry-adaptive steady heat conduction based on convolutional neural networks. Case Studies in Thermal Engineering, 2021, 28, 101651.	5.7	19
16	Data-Driven Modeling of Geometry-Adaptive Steady Heat Convection Based on Convolutional Neural Networks. Fluids, 2021, 6, 436.	1.7	15
17	Geometry and boundary condition adaptive data-driven model of fluid flow based on deep convolutional neural networks. Physics of Fluids, 2021, 33, .	4.0	23
18	Simulation of thrombosis in a stenotic microchannel: The effects of vWF-enhanced shear activation of platelets. International Journal of Engineering Science, 2020, 147, 103206.	5.0	22

Wei-Tao Wu

#	Article	IF	CITATIONS
19	Numerical Simulations of the Flow of a Dense Suspension Exhibiting Yield-Stress and Shear-Thinning Effects. Energies, 2020, 13, 6635.	3.1	3
20	Time-variant prediction of flow over an airfoil using deep neural network. Physics of Fluids, 2020, 32, .	4.0	41
21	Three-Dimensional Thermal Modeling of Internal Shorting Process in a 20Ah Lithium-Ion Polymer Battery. Energies, 2020, 13, 1013.	3.1	8
22	Effects of Temperature on the Flow and Heat Transfer in Gel Fuels: A Numerical Study. Energies, 2020, 13, 821.	3.1	7
23	Recent Advances in Mechanics of Non-Newtonian Fluids. Fluids, 2020, 5, 10.	1.7	16
24	Simulation of blood flow in a sudden expansion channel and a coronary artery. Journal of Computational and Applied Mathematics, 2020, 376, 112856.	2.0	14
25	Numerical analysis of Richtmyer–Meshkov instability of circular density interface in presence of transverse magnetic field. Physics of Fluids, 2020, 32, .	4.0	13
26	Unsteady reduced-order model of flow over cylinders based on convolutional and deconvolutional neural network structure. Physics of Fluids, 2020, 32, .	4.0	37
27	Interaction of cylindrical converging shocks with an equilateral triangular SF6 cylinder. Physics of Fluids, 2019, 31, .	4.0	5
28	Threeâ€dimensional nonisothermal modeling of solid oxide fuel cell coupling electrochemical kinetics and species transport. International Journal of Energy Research, 2019, 43, 6907.	4.5	7
29	Steady Flow of a Cement Slurry. Energies, 2019, 12, 2604.	3.1	23
30	Numerical investigations on the oblique water entry of high-speed projectiles. Applied Mathematics and Computation, 2019, 362, 124547.	2.2	7
31	The evolution of the initial flow structures of a highly under-expanded circular jet. Journal of Fluid Mechanics, 2019, 871, 305-331.	3.4	16
32	Numerical Investigations on the Water Entry of Cylindrical Projectiles with Different Initial Conditions. Applied Sciences (Switzerland), 2019, 9, 1858.	2.5	5
33	Flow Characteristics of Water-HPC Gel in Converging Tubes and Tapered Injectors. Energies, 2019, 12, 1643.	3.1	6
34	The effects of particle concentration and various fluxes on the flow of a fluid-solid suspension. Applied Mathematics and Computation, 2019, 358, 151-160.	2.2	3
35	Combustion characteristics of inorganic kerosene gel droplet with fumed silica as gellant. Experimental Thermal and Fluid Science, 2019, 103, 377-384.	2.7	20
36	Modeling of PEM fuel cell with thin MEA under low humidity operating condition. Applied Energy, 2019, 242, 1513-1527.	10.1	65

WEI-TAO WU

#	Article	IF	CITATIONS
37	Natural Convection in a Non-Newtonian Fluid: Effects of Particle Concentration. Fluids, 2019, 4, 192.	1.7	7
38	Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray. Energies, 2019, 12, 4618.	3.1	6
39	A non-linear fluid suspension model for blood flow. International Journal of Non-Linear Mechanics, 2019, 109, 32-39.	2.6	7
40	Natural convection and anisotropic heat transfer in a ferro-nanofluid under magnetic field. International Journal of Heat and Mass Transfer, 2019, 133, 581-595.	4.8	27
41	Three-dimensional thermal modeling of Li-ion battery cell and 50†V Li-ion battery pack cooled by mini-channel cold plate. Applied Thermal Engineering, 2019, 147, 829-840.	6.0	100
42	Role of vane configuration on the heat dissipation performance of ventilated brake discs. Applied Thermal Engineering, 2018, 136, 118-130.	6.0	16
43	Heat transfer and flow of nanofluids: Effect of shear thinning viscosity. Canadian Journal of Physics, 2018, 96, 148-156.	1.1	0
44	Flow of a Dense Suspension Modeled as a Modified Second Grade Fluid. Fluids, 2018, 3, 55.	1.7	3
45	Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger. Energies, 2018, 11, 919.	3.1	25
46	Flow of a fluid-solid mixture: Normal stress differences and slip boundary condition. International Journal of Non-Linear Mechanics, 2017, 90, 39-49.	2.6	3
47	Heat transfer and flow of a dense suspension between two cylinders. International Journal of Heat and Mass Transfer, 2017, 112, 597-606.	4.8	9
48	Transport of platelets induced by red blood cells based on mixture theory. International Journal of Engineering Science, 2017, 118, 16-27.	5.0	18
49	Normal stress effects in the gravity driven flow of granular materials. International Journal of Non-Linear Mechanics, 2017, 92, 84-91.	2.6	10
50	Development of a High-Throughput Magnetic Separation Device for Malaria-Infected Erythrocytes. Annals of Biomedical Engineering, 2017, 45, 2888-2898.	2.5	19
51	Numerical Simulation of Red Blood Cell-Induced Platelet Transport in Saccular Aneurysms. Applied Sciences (Switzerland), 2017, 7, 484.	2.5	11
52	Heat Transfer and Flow of Nanofluids in a Y-Type Intersection Channel with Multiple Pulsations: A Numerical Study. Energies, 2017, 10, 492.	3.1	9
53	Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field. Energies, 2017, 10, 1065.	3.1	13
54	Heat Transfer in a Drilling Fluid with Geothermal Applications. Energies, 2017, 10, 1349.	3.1	6

Wei-Tao Wu

#	Article	IF	CITATIONS
55	Heat Transfer and Dissipation Effects in the Flow of a Drilling Fluid. Fluids, 2016, 1, 4.	1.7	17
56	Visualization and analysis of biomaterial-centered thrombus formation within a defined crevice under flow. Biomaterials, 2016, 96, 72-83.	11.4	32
57	Fully developed flow of a drilling fluid between two rotating cylinders. Applied Mathematics and Computation, 2016, 281, 266-277.	2.2	18
58	Study of blood flow in several benchmark micro-channels using a two-fluid approach. International Journal of Engineering Science, 2015, 95, 49-59.	5.0	37
59	A numerical study of blood flow using mixture theory. International Journal of Engineering Science, 2014, 76, 56-72.	5.0	35
60	Heat transfer and flow of a slag-type non-linear fluid: Effects of variable thermal conductivity. Applied Mathematics and Computation, 2014, 227, 77-91.	2.2	7
61	On the coefficients of the interaction forces in a two-phase flow of a fluid infused with particles. International Journal of Non-Linear Mechanics, 2014, 59, 76-82.	2.6	18
62	Falling film flow of a viscoelastic fluid along a wall. Mathematical Methods in the Applied Sciences, 2014, 37, 2840-2853.	2.3	7
63	Flow of granular materials modeled as a non-linear fluid. Mechanics Research Communications, 2013, 52, 62-68.	1.8	13