Hui Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372408/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene composites with Ru-RuO2 heterostructures: Highly efficient Mott–Schottky-type electrocatalysts for pH-universal water splitting and flexible zinc–air batteries. Applied Catalysis B: Environmental, 2022, 302, 120838.	20.2	124
2	Iron and nitrogen doped carbon derived from ferrocene and ZIF-8 as proton exchange membrane fuel cell cathode catalyst. Applied Surface Science, 2022, 573, 151607.	6.1	10
3	S/Se dual-doping promotes the formation of active Ni/Fe oxyhydroxide for oxygen evolution reaction of (sea)water splitting. International Journal of Hydrogen Energy, 2022, 47, 21753-21759.	7.1	15
4	Substitutional Doping Engineering toward W ₂ N Nanorod for Hydrogen Evolution Reaction at High Current Density. , 2022, 4, 1374-1380.		21
5	Nonionic Surfactant Coconut Diethanol Amide Inhibits the Growth of Zinc Dendrites for More Stable Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7590-7599.	5.1	10
6	Janus bimetallic materials as efficient electrocatalysts for hydrogen oxidation and evolution reactions. Journal of Colloid and Interface Science, 2022, 625, 128-135.	9.4	10
7	Interfacial polarization triggered by glutamate accelerates dehydration of hydrated zinc ions for zinc-ion batteries. Chemical Engineering Journal, 2021, 416, 127704.	12.7	29
8	A nonpolar buffer layer on MoS2 surface to improve stability in lithium ion battery. Materials Letters, 2021, 287, 129228.	2.6	2
9	Phaseâ€Separated Mo–Ni Alloy for Hydrogen Oxidation and Evolution Reactions with High Activity and Enhanced Stability. Advanced Energy Materials, 2021, 11, 2003511.	19.5	76
10	Arginine Cations Inhibiting Charge Accumulation of Dendrites and Boosting Zn Metal Reversibility in Aqueous Rechargeable Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 6855-6863.	6.7	43
11	Electron Density Modulation of MoO ₂ /Ni to Produce Superior Hydrogen Evolution and Oxidation Activities. ACS Applied Materials & Interfaces, 2021, 13, 39470-39479.	8.0	20
12	Mo-modified cobalt phosphide as highly active and stable electrocatalysts for hydrogen oxidation reaction. International Journal of Hydrogen Energy, 2021, 46, 31300-31304.	7.1	7
13	Fe-Nx doped carbon nanotube as a high efficient cathode catalyst for proton exchange membrane fuel cell. Chemical Engineering Journal, 2021, 423, 130241.	12.7	23
14	Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48923-48933.	8.0	18
15	Porous Indium Tin Oxide-Supported NiFe LDH as a Highly Active Electrocatalyst in the Oxygen Evolution Reaction and Flexible Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48774-48783.	8.0	14
16	A self-driven approach for local ion intercalation in vdW crystals. Nanoscale, 2020, 12, 1448-1454.	5.6	11
17	Co2P/CoP hybrid as a reversible electrocatalyst for hydrogen oxidation/evolution reactions in alkaline medium. Journal of Catalysis, 2020, 390, 23-29.	6.2	61
18	Improving the Catalytic Performance of Co/N/C Catalyst for Oxygen Reduction Reaction by Alloying with Fe. Journal of the Electrochemical Society, 2020, 167, 104502.	2.9	9

Ηυι Μένς

#	Article	IF	CITATIONS
19	Highly Dispersed Nonprecious Metal Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 17481-17491.	8.0	25
20	Enhancing the oxygen evolution reaction performance of NiFeOOH electrocatalyst for Zn-air battery by N-doping. Journal of Catalysis, 2020, 389, 375-381.	6.2	33
21	A Highâ€Power Aqueous Zinc–Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions. ChemSusChem, 2020, 13, 2239-2244.	6.8	59
22	Balance between favored activity and side reactions of nitrogen doped carbon as cathode material in Lithium-oxygen battery. Journal of Catalysis, 2020, 383, 199-205.	6.2	8
23	Electron Density Modulation of Metallic MoO ₂ by Ni Doping to Produce Excellent Hydrogen Evolution and Oxidation Activities in Acid. ACS Energy Letters, 2020, 5, 1908-1915.	17.4	110
24	Nitrogen doped graphitic carbon from biomass as non noble metal catalyst for oxygen reduction reaction. Materials Today Energy, 2019, 13, 100-108.	4.7	34
25	Templated growth of Fe/N/C catalyst on hierarchically porous carbon for oxygen reduction reaction in proton exchange membrane fuel cells. Journal of Power Sources, 2019, 431, 31-39.	7.8	41
26	FeOOH Nanocubes Anchored on Carbon Ribbons for Use in Li/O ₂ Batteries. Chemistry - A European Journal, 2019, 25, 3112-3118.	3.3	11
27	Non-noble metal catalyst on carbon ribbon for fuel cell cathode. Journal of Solid State Electrochemistry, 2018, 22, 761-771.	2.5	5
28	Amorphous SiO ₂ /C composite as anode material for lithium-ion batteries. Journal of Materials Research, 2018, 33, 1219-1225.	2.6	24
29	Cobalt iron carbonate hydroxide hydrate on 3D porous carbon as active and stable bifunctional oxygen electrode for Zn–air battery. Journal of Power Sources, 2018, 402, 388-393.	7.8	25
30	Non Noble Metal Catalyst for Oxygen Reduction Reaction and Its Characterization by Simulated Fuel Cell Test. Journal of the Electrochemical Society, 2018, 165, J3008-J3015.	2.9	13
31	Growth of Large-Scale, Large-Size, Few-Layered α-MoO ₃ on SiO ₂ and Its Photoresponse Mechanism. ACS Applied Materials & Interfaces, 2017, 9, 5543-5549.	8.0	50
32	Carbon dots/BiOCl films with enhanced visible light photocatalytic performance. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	16
33	Highly active and stable non noble metal catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 10423-10434.	7.1	29
34	A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Research, 2016, 9, 2823-2851.	10.4	198
35	SnS ₂ Urchins as Anode Material for Lithium-ion Battery. Electrochemistry, 2016, 84, 420-426.	1.4	8
36	Insight into the nitrogen-doped carbon as oxygen reduction reaction catalyst: The choice of carbon/nitrogen source and active sites. International Journal of Hydrogen Energy, 2016, 41, 8563-8575.	7.1	43

Ηυι Μενς

#	Article	IF	CITATIONS
37	Controllable Deposition of Platinum Layers on Oxide Surfaces for the Synthesis of Fuel Cell Catalysts. ChemElectroChem, 2016, 3, 1635-1640.	3.4	4
38	Nitrogen Doped Carbon with Metal as Electrocatalysts for the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2016, 163, F1373-F1379.	2.9	12
39	BiOCl/SnS ₂ Core-Shell Photocatalyst for the Degradation of Organic Pollutants. Nano, 2016, 11, 1650087.	1.0	11
40	The influence of nitrogen source and doping sequence on the electrocatalytic activity for oxygen reduction reaction of nitrogen doped carbon materials. International Journal of Hydrogen Energy, 2016, 41, 13493-13503.	7.1	33
41	Nitrogen doped graphitic carbon ribbons from cellulose as non noble metal catalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 14111-14122.	7.1	43
42	Recent Development of Pd-Based Electrocatalysts for Proton Exchange Membrane Fuel Cells. Catalysts, 2015, 5, 1221-1274.	3.5	82
43	BiOCl/SnS ₂ hollow spheres for the photocatalytic degradation of waste water. RSC Advances, 2015, 5, 107088-107097.	3.6	30
44	Factors Influencing the Growth of Pt Nanowires via Chemical Selfâ€Assembly and their Fuel Cell Performance. Small, 2015, 11, 3377-3386.	10.0	30
45	p-BiOI/n-SnS ₂ heterojunction flowerlike structure with enhanced visible-light photocatalytic performance. RSC Advances, 2015, 5, 15469-15478.	3.6	51
46	lodine doped graphene as anode material for lithium ion battery. Carbon, 2015, 94, 1-8.	10.3	89
47	Characteristics of a Silicon Nanowires/PEDOT:PSS Heterojunction and Its Effect on the Solar Cell Performance. ACS Applied Materials & amp; Interfaces, 2015, 7, 5830-5836.	8.0	50
48	Freestanding CNT–WO ₃ hybrid electrodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12076-12080.	10.3	101
49	One-Step Synthesis of Immobilized BiOCl Film with Excellent Adsorption Capacity for Dyes. Nano, 2015, 10, 1550119.	1.0	5
50	lodine/nitrogen co-doped graphene as metal free catalyst for oxygen reduction reaction. Carbon, 2015, 95, 930-939.	10.3	91
51	Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2014, 129, 196-202.	5.2	23
52	Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2014, 245, 772-778.	7.8	83
53	Exploring the active sites of nitrogen-doped graphene as catalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2014, 39, 15996-16005.	7.1	164
54	A facile route to carbide-based electrocatalytic nanocomposites. Journal of Materials Chemistry, 2012, 22, 5072.	6.7	37

Ηυι Μενς

#	Article	IF	CITATIONS
55	In situFTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. Physical Chemistry Chemical Physics, 2011, 13, 2667-2673.	2.8	81
56	Synthesis of Pd on porous hollow carbon spheres as an electrocatalyst for alcohol electrooxidation. RSC Advances, 2011, 1, 191.	3.6	30
57	Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy and Environmental Science, 2011, 4, 1522.	30.8	44
58	Electrodeposited palladium nanostructure as novel anode for direct formic acid fuel cell. Journal of Materials Chemistry, 2011, 21, 11352.	6.7	51
59	Direct formation of nanostructured graphitic carbon from an acrylic ion-exchange resin at 600°C. Journal of Materials Research, 2011, 26, 3083-3090.	2.6	3
60	Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability. Electrochimica Acta, 2010, 55, 6450-6461.	5.2	106
61	Novel Pt-free catalyst for oxygen electroreduction. Electrochemistry Communications, 2006, 8, 588-594.	4.7	218