Fabio L Olivares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/737240/publications.pdf

Version: 2024-02-01

70961 66788 6,939 110 41 78 citations h-index g-index papers 117 117 117 4657 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 2015, 196, 15-27.	1.7	591
2	Humic Acids Isolated from Earthworm Compost Enhance Root Elongation, Lateral Root Emergence, and Plasma Membrane H+-ATPase Activity in Maize Roots. Plant Physiology, 2002, 130, 1951-1957.	2.3	572
3	Infection and Colonization of Rice Seedlings by the Plant Growth-Promoting Bacterium Herbaspirillum seropedicae Z67. Molecular Plant-Microbe Interactions, 2002, 15, 894-906.	1.4	351
4	Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs.		309
5	Infection of sugar cane by the nitrogen-fixing bacteriumAcetobacter diazotrophicus. Journal of Experimental Botany, 1994, 45, 757-766.	2.4	302
6	Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 2014, 1, 3.	1.9	299
7	Infection and Colonization of Sugar Cane and Other Graminaceous Plants by Endophytic Diazotrophs. Critical Reviews in Plant Sciences, 1998, 17, 77-119.	2.7	226
8	Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils, 1996, 21, 197-200.	2.3	223
9	Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology and Biotechnology, 1994, 10, 401-405.	1.7	178
10	Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta, 2010, 231, 1025-1036.	1.6	173
11	Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, 2010, 78, 457-466.	4.2	164
12	Infection of mottled stripe disease-susceptible and resistant sugar cane varieties by the endophytic diazotroph Herbaspirillum. New Phytologist, 1997, 135, 723-737.	3.5	146
13	Herbaspirillum, an endophytic diazotroph colonizing vascular tissue 3Sorghum bicolor L. Moench. Journal of Experimental Botany, 1997, 48, 785-798.	2.4	141
14	A combination of humic substances and Herbaspirillum seropedicae inoculation enhances the growth of maize (Zea mays L.). Plant and Soil, 2013, 366, 119-132.	1.8	134
15	Bioactivity of Chemically Transformed Humic Matter from Vermicompost on Plant Root Growth. Journal of Agricultural and Food Chemistry, 2010, 58, 3681-3688.	2.4	125
16	Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions1. Journal of Experimental Botany, 2001, 52, 747-760.	2.4	123
17	Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Scientia Horticulturae, 2015, 183, 100-108.	1.7	117
18	Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	105

#	Article	IF	CITATIONS
19	Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresource Technology, 2012, 110, 390-395.	4.8	101
20	Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	93
21	Plant microbiome structure and benefits for sustainable agriculture. Current Plant Biology, 2021, 26, 100198.	2.3	83
22	Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, 2011, 159, 202-211.	1.3	74
23	Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant and Soil, 2013, 362, 161-174.	1.8	74
24	From Lab to Field: Role of Humic Substances Under Open-Field and Greenhouse Conditions as Biostimulant and Biocontrol Agent. Frontiers in Plant Science, 2020, 11, 426.	1.7	72
25	Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science, 2012, 63, 315-324.	1.8	71
26	Plant chemical priming by humic acids. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	71
27	Relationships Between Chemical Characteristics and Root Growth Promotion of Humic Acids Isolated From Brazilian Oxisols. Soil Science, 2009, 174, 611-620.	0.9	67
28	Metabolic profile and antioxidant responses during drought stress recovery in sugarcane treated with humic acids and endophytic diazotrophic bacteria. Annals of Applied Biology, 2016, 168, 203-213.	1.3	66
29	The Family Oxalobacteraceae. , 2014, , 919-974.		66
30	Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration, 2013, 129, 95-102.	1.5	63
31	Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Canadian Journal of Microbiology, 2008, 54, 918-931.	0.8	61
32	Humic substances from vermicompost enhance urban lettuce production. Agronomy for Sustainable Development, 2015, 35, 225-232.	2.2	59
33	Genome sequencing and assessment of plant growth-promoting properties of a Serratia marcescens strain isolated from vermicompost. BMC Genomics, 2018, 19, 750.	1.2	58
34	Molecular Characteristics of Humic Acids Isolated from Vermicomposts and Their Relationship to Bioactivity. Journal of Agricultural and Food Chemistry, 2014, 62, 11412-11419.	2.4	54
35	Characterization of diazotrophic bacteria associated with maize: effect of plant genotype, ontogeny and nitrogen-supply. World Journal of Microbiology and Biotechnology, 2006, 22, 967-974.	1.7	53
36	Bioatividade de ácidos húmicos: efeitos sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesquisa Agropecuaria Brasileira, 2002, 37, 1301-1310.	0.9	53

#	Article	IF	CITATIONS
37	Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology, 2009, 191, 477-483.	1.0	51
38	Desempenho do abacaxizeiro 'Vitória' em resposta à aplicação de ácidos húmicos durante a aclimatação. Revista Brasileira De Ciencia Do Solo, 2009, 33, 979-990.	0.5	50
39	Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2015, 2, .	1.9	49
40	Endophytic colonization of Arabidopsis thaliana by Gluconacetobacter diazotrophicus and its effect on plant growth promotion, plant physiology, and activation of plant defense. Plant and Soil, 2016, 399, 257-270.	1.8	48
41	Phosphorus speciation and highâ€affinity transporters are influenced by humic substances. Journal of Plant Nutrition and Soil Science, 2016, 179, 206-214.	1.1	45
42	Technical approaches to inoculate micropropagated sugar cane plants were Acetobacter diazotrophicus. Plant and Soil, 1998, 206, 205-211.	1.8	44
43	Characterization of glutamine synthetase genes in sugarcane genotypes with different rates of biological nitrogen fixation. Plant Science, 2005, 169, 819-832.	1.7	43
44	Root exudate profiling of maize seedlings inoculated with Herbaspirillum seropedicaeand humic acids. Chemical and Biological Technologies in Agriculture, 2014, 1 , .	1.9	42
45	Changes in metabolic profiling of sugarcane leaves induced by endophytic diazotrophic bacteria and humic acids. Peerl, 2018, 6, e5445.	0.9	40
46	Growth promotion of pineapple 'vit \tilde{A}^3 ria' by humic acids and burkholderia spp. during acclimatization. Revista Brasileira De Ciencia Do Solo, 2010, 34, 1593-1600.	0.5	39
47	Evaluation of the effects of humic acids on maize root architecture by label-free proteomics analysis. Scientific Reports, 2019, 9, 12019.	1.6	39
48	Initial pH of medium affects organic acids production but do not affect phosphate solubilization. Brazilian Journal of Microbiology, 2015, 46, 367-375.	0.8	38
49	Production of border cells and colonization of maize root tips by Herbaspirillum seropedicae are modulated by humic acid. Plant and Soil, 2017, 417, 403-413.	1.8	37
50	Interaction between Humic Substances and Plant Hormones for Phosphorous Acquisition. Agronomy, 2020, 10, 640.	1.3	35
51	Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technologies in Agriculture, $2019, 6, .$	1.9	34
52	Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. Journal of Analytical and Applied Pyrolysis, 2013, 104, 540-550.	2.6	33
53	Evaluation of molecular properties of humic acids from vermicompost by 13 C-CPMAS-NMR spectroscopy and thermochemolysis–GC–MS. Journal of Analytical and Applied Pyrolysis, 2019, 141, 104634.	2.6	32
54	The Amount of Phosphate Solubilization Depends on the Strain, C-Source, Organic Acids and Type of Phosphate. Geomicrobiology Journal, 2019, 36, 232-242.	1.0	32

#	Article	IF	Citations
55	Soil organic matter and nutrient pools under longâ€term nonâ€burning management of sugar cane. European Journal of Soil Science, 2010, 61, 375-383.	1.8	30
56	The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae. BMC Microbiology, 2012, 12, 98.	1.3	30
57	Structural interaction between GFP-labeled diazotrophic endophytic bacterium Herbaspirillum seropedicae RAM10 and pineapple plantlets 'Vitória'. Brazilian Journal of Microbiology, 2011, 42, 114-125.	0.8	29
58	The biostimulant manufactured using diazotrophic endophytic bacteria and humates is effective to increase sugarcane yield. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	28
59	Alkamides: a new class of plant growth regulators linked to humic acid bioactivity. Chemical and Biological Technologies in Agriculture, 2019, 6, .	1.9	27
60	Seleção de bactérias promotoras de crescimento no abacaxizeiro cultivar Vitória durante a aclimatização. Revista Brasileira De Ciencia Do Solo, 2010, 34, 349-360.	0.5	26
61	Promoção de enraizamento de microtoletes de cana-de-açúcar pelo uso conjunto de substâncias húmicas e bactérias diazotróficas endofÃŧicas. Revista Brasileira De Ciencia Do Solo, 2008, 32, 1121-1128.	0.5	26
62	Mixed rhizobia and Herbaspirillum seropedicae inoculations with humic acid-like substances improve water-stress recovery in common beans. Chemical and Biological Technologies in Agriculture, 2017, 4, .	1.9	25
63	Metabolite fingerprints of maize and sugarcane seedlings: searching for markers after inoculation with plant growth-promoting bacteria in humic acids. Chemical and Biological Technologies in Agriculture, 2019, 6, .	1.9	25
64	Arbuscular mycorrhizal fungi induce differential activation of the plasma membrane and vacuolar H+ pumps in maize roots. Mycorrhiza, 2009, 19, 69-80.	1.3	21
65	Humic acids and Herbaspirillum seropedicae change the extracellular H+ flux and gene expression in maize roots seedlings. Chemical and Biological Technologies in Agriculture, 2019, 6, .	1.9	20
66	Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice. Planta, 2020, 252, 87.	1.6	20
67	Plant hormone crosstalk mediated by humic acids. Chemical and Biological Technologies in Agriculture, 2022, 9, .	1.9	19
68	Root growth of tomato seedlings intensified by humic substances from peat bogs. Revista Brasileira De Ciencia Do Solo, 2011, 35, 1609-1617.	0.5	18
69	Endophytic colonization of sugarcane (Saccharum officinarum) by the novel diazotrophs Shinella sp. UYSO24 and Enterobacter sp. UYSO10. Plant and Soil, 2016, 403, 403-418.	1.8	18
70	Differential effects of salinity and osmotic stress on the plant growth-promoting bacterium Gluconacetobacter diazotrophicus PAL5. Archives of Microbiology, 2016, 198, 287-294.	1.0	17
71	Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS ONE, 2019, 14, e0219554.	1.1	17
72	Recobrimento de sementes de milho com ácidos húmicos e bactérias diazotróficas endofÃticas. Pesquisa Agropecuaria Brasileira, 2008, 43, 545-548.	0.9	16

#	Article	IF	CITATIONS
73	Highly specific host-pathogen interactions influence <i>Metarhizium brunneum</i> blastospore virulence against <i>Culex quinquefasciatus</i> larvae. Virulence, 2018, 9, 1449-1467.	1.8	16
74	Humic acids trigger the weak acids stress response in maize seedlings. Chemical and Biological Technologies in Agriculture, 2020, 7, .	1.9	16
75	Distribuição de massa molecular de ácidos húmicos e promoção do crescimento radicular. Revista Brasileira De Ciencia Do Solo, 2009, 33, 1613-1623.	0.5	14
76	Detection and cellular localization of Xanthomonas campestris pv. viticola in seeds of commercial 'Red Globe' grapes. Tropical Plant Pathology, 2014, 39, 134-140.	0.8	14
77	Compost biofortification with diazotrophic and Pâ€solubilizing bacteria improves maturation process and P availability. Journal of the Science of Food and Agriculture, 2017, 97, 949-955.	1.7	14
78	Population structure and pangenome analysis of Enterobacter bugandensis uncover the presence of blaCTX-M-55, blaNDM-5 and blaIMI-1, along with sophisticated iron acquisition strategies. Genomics, 2020, 112, 1182-1191.	1.3	14
79	Insights into the structure and role of seed-borne bacteriome during maize germination. FEMS Microbiology Ecology, 2021, 97, .	1.3	14
80	Humic Acids Interfere with Nutrient Sensing in Plants Owing to the Differential Expression of TOR. Journal of Plant Growth Regulation, 2019, 38, 216-224.	2.8	13
81	Herbaspirillum seropedicae and sugarcane endophytic interaction investigated by using high pressure freezing electron microscopy. Brazilian Journal of Microbiology, 0, 34, 69-71.	0.8	12
82	Hormonal imbalance triggered by rhizobacteria enhance nutrient use efficiency and biomass in oil palm. Scientia Horticulturae, 2020, 264, 109161.	1.7	11
83	Acclimation with humic acids enhances maize and tomato tolerance to salinity. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	11
84	Cuban zeolite as ammonium carrier in urea-based fertilizer pellets: Photoacoustic-based sensor for monitoring N-ammonia losses by volatilization in aqueous solutions. Sensors and Actuators B: Chemical, 2015, 212, 35-40.	4.0	10
85	The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe. Frontiers in Microbiology, 2020, 11, 562238.	1.5	10
86	Especificidade de anti-soro policlonal à Leifsonia xyli subsp. xyli. Tropical Plant Pathology, 2004, 29, 614-619.	0.3	10
87	Efeito dos ácidos húmicos na inoculação de bactérias diazotróficas endofÃticas em sementes de milho. Ciencia Rural, 2009, 39, 1880-1883.	0.3	9
88	Crescimento de mudas de maracujazeiro-doce inoculadas com fungos micorrÃzicos arbusculares e bactérias diazotróficas sob diferentes doses de fósforo. Revista Brasileira De Fruticultura, 2012, 34, 442-450.	0.2	9
89	Initial growth of maize in response to application of rock phosphate, vermicompost and endophytic bacteria. Revista Ceres, 2012, 59, 262-270.	0.1	7
90	Synthesis and role of melanin for tolerating <i>in vitro </i> irumen digestion in <i>Duddingtonia flagrans </i> , a nematode-trapping fungus. Mycology, 2019, 10, 229-242.	2.0	7

#	Article	IF	CITATIONS
91	Attenuations of bacterial spot disease Xanthomonas euvesicatoria on tomato plants treated with biostimulants. Chemical and Biological Technologies in Agriculture, 2021, 8, .	1.9	7
92	Rhizobacteria modify root architecture and improve nutrient uptake in oil palm seedlings despite reduced fertilizer. Rhizosphere, 2021, 19, 100420.	1.4	7
93	Fast Pyrolysis of Peanut Husk Agroindustrial Waste: Intensification of Anhydro Sugar (Levoglucosan) Production. Waste and Biomass Valorization, 2021, 12, 5573-5585.	1.8	6
94	Fungos micorrÃzicos arbusculares, bactérias diazotróficas e adubação fosfatada em mudas de mamoeiro. Revista Brasileira De Fruticultura, 2011, 33, 932-940.	0.2	5
95	Quantitative proteomic analysis reveals altered enzyme expression profile in <i>Zea mays</i> roots during the early stages of colonization by <i>Herbaspirillum seropedicae</i> . Proteomics, 2021, 21, e2000129.	1.3	5
96	Characterization of cellular, biochemical and genomic features of the diazotrophic plant growth-promoting bacterium Azospirillum sp. UENF-412522, a novel member of the Azospirillum genus. Microbiological Research, 2022, 254, 126896.	2.5	5
97	Passion fruit plants treated with biostimulants induce defense-related and phytohormone-associated genes. Plant Gene, 2022, 30, 100357.	1.4	5
98	Altered bacteria community dominance reduces tolerance to resident fungus and seed to seedling growth performance in maize (Zea mays L. var. DKB 177). Microbiological Research, 2021, 243, 126643.	2.5	4
99	Endophytic diazotrophic bacteria mitigate water deprivation effects in pineapple explants during acclimatization. Theoretical and Experimental Plant Physiology, 2020, 32, 63-77.	1.1	4
100	Genome sequencing of the vermicompost strain Stenotrophomonas maltophilia UENF-4GII and population structure analysis of the S. maltophilia Sm3 genogroup. Microbiological Research, 2022, 255, 126923.	2.5	4
101	Promoting the growth of Brachiaria decumbens by humic acids (HAs). Australian Journal of Crop Science, 2018, 12, 1114-1121.	0.1	3
102	Herbaspirillum., 2020,, 493-508.		3
103	Diazotrophic bacteria and nitrogen fertilization on the growth of micropropagated pineapple plantlets during acclimatization. Ciencia Rural, 2016, 46, 1952-1958.	0.3	2
104	Transporte de Xanthomonas vesicatoria de sementes para pl \tilde{A}^{\ddagger} ntulas e mudas de tomate. Horticultura Brasileira, 2013, 31, 50-58.	0.1	1
105	Soil Organic Matter Quality From Soils Cropped by Traditional Peasants. Sustainable Agriculture Research, 2014, 3, 63.	0.2	1
106	Functional uncoupling of the tonoplast proton pump and its effect on the flesh gelling physiological disorder in papaya fruit. Scientia Horticulturae, 2015, 187, 115-121.	1.7	1
107	Plant growth promotion of micropropagated sugarcane seedlings var. Co 412 inoculated with endophytic diazotrophic bacteria and effects on the Ratoon Stunting Disease. Australasian Plant Pathology, 2021, 50, 513.	0.5	1
108	Mutualistic interaction of native Serratia marcescens UENF-22GI with Trichoderma longibrachiatum UENF-F476 boosting seedling growth of tomato and papaya. World Journal of Microbiology and Biotechnology, 2021, 37, 211.	1.7	1

#	Article	IF	CITATIONS
109	Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate. Revista Ceres, 2014, 61, 414-423.	0.1	o
110	Microbial inoculants in agriculture and its effects on plant microbiome. , 2022, , 151-169.		0