Michael Jäger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7372219/publications.pdf

Version: 2024-02-01

257357 233338 2,100 53 24 45 citations g-index h-index papers 54 54 54 2606 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Tripletâ€"Triplet Annihilation Upconversion by Polymeric Sensitizers. Journal of Physical Chemistry C, 2022, 126, 4057-4066.	1.5	8
2	Exploiting α-∫i‰-Reactivities during Polymerization for Controlled Heterotelechelic Poly(carbazole)s. Macromolecules, 2022, 55, 3688-3698.	2.2	4
3	Adaptation of electrodes and printable gel polymer electrolytes for optimized fully organic batteries. Journal of Polymer Science, 2021, 59, 494-501.	2.0	7
4	Photoluminescence Switching of CdSe/ZnS Quantum Dots Toward Sensing Applications Triggered by Thermoresponsive Poly(N-Isopropylacrylamide) Films on Plasmonic Gold Surfaces. ACS Applied Nano Materials, 2021, 4, 2386-2394.	2.4	6
5	Printable ionic liquid-based gel polymer electrolytes for solid state all-organic batteries. Energy Storage Materials, 2020, 25, 750-755.	9.5	36
6	Facile and Reliable Emissionâ€Based Nanomolar Anion Sensing by Luminescent Iridium Receptors Featuring Chelating Halogenâ€Bonding Sites. Chemistry - A European Journal, 2020, 26, 14679-14687.	1.7	8
7	High-Yielding Syntheses of Multifunctionalized Ru ^{II} Polypyridyl-Type Sensitizer: Experimental and Computational Insights into Coordination. Inorganic Chemistry, 2019, 58, 9822-9832.	1.9	8
8	Accumulative Charging of Redox-Active Side-Chain-Modified Polymers: Experimental and Computational Insights from Oligo- to Polymeric Triarylamines. Macromolecules, 2019, 52, 4673-4685.	2.2	3
9	Towards Covalent Photosensitizer-Polyoxometalate Dyads-Bipyridyl-Functionalized Polyoxometalates and Their Transition Metal Complexes. Molecules, 2019, 24, 4446.	1.7	4
10	Pt ^{II} Phosphors with Click-Derived 1,2,3-Triazole-Containing Tridentate Chelates. Organometallics, 2018, 37, 145-155.	1.1	31
11	"Chemistry-on-the-complex†functional Ru ^{II} polypyridyl-type sensitizers as divergent building blocks. Chemical Society Reviews, 2018, 47, 7577-7627.	18.7	78
12	Halogen-bond-based cooperative ion-pair recognition by a crown-ether-embedded 5-iodo-1,2,3-triazole. Chemical Communications, 2017, 53, 2260-2263.	2.2	42
13	Polymeric Halogenâ€Bondâ€Based Donor Systems Showing Selfâ€Healing Behavior in Thin Films. Angewandte Chemie - International Edition, 2017, 56, 4047-4051.	7.2	79
14	Poly(<i>N</i> -alkyl-3,6-carbazole)s via Suzuki–Miyaura Polymerization: From Macrocyclization toward End Functionalization. Macromolecules, 2017, 50, 1319-1330.	2.2	14
15	Hydrophilic Poly(naphthalene diimide)â€Based Acceptor–Photosensitizer Dyads: Toward Waterâ€Processible Modular Photoredoxâ€Active Architectures. Macromolecular Chemistry and Physics, 2017, 218, 1600534.	1.1	10
16	Synthetic approaches towards structurally-defined electrochemically and (photo)redox-active polymer architectures. Chemical Society Reviews, 2017, 46, 2754-2798.	18.7	25
17	Mild electropolymerization and monitoring of continuous film formation for photoredox-active Ru metallopolymers. Journal of Materials Chemistry C, 2017, 5, 2636-2648.	2.7	11
18	A multidonor–photosensitizer–multiacceptor triad for long-lived directional charge separation. Physical Chemistry Chemical Physics, 2017, 19, 28572-28578.	1.3	17

#	Article	IF	Citations
19	Extending Longâ€lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry - A European Journal, 2017, 23, 16484-16490.	1.7	16
20	Polymerbasierte Halogenbrückendonoren mit selbstheilenden Eigenschaften in Filmen. Angewandte Chemie, 2017, 129, 4105-4110.	1.6	14
21	Frontispiece: Extending Longâ€lived Charge Separation Between Donor and Acceptor Blocks in Novel Copolymer Architectures Featuring a Sensitizer Core. Chemistry - A European Journal, 2017, 23, .	1.7	0
22	Asymmetric Cyclometalated Ru ^{II} Polypyridyl-Type Complexes with π-Extended Carbanionic Donor Sets. Inorganic Chemistry, 2017, 56, 7720-7730.	1.9	7
23	Efficient Energy Transfer and Metal Coupling in Cyanide-Bridged Heterodinuclear Complexes Based on (Bipyridine)(terpyridine)ruthenium(II) and (Phenylpyridine)iridium(III) Complexes. Inorganic Chemistry, 2016, 55, 5152-5167.	1.9	18
24	Modular Assembly of Poly(naphthalene diimide) and Ru(II) Dyes for an Efficient Light-Induced Charge Separation in Hierarchically Controlled Polymer Architectures. Macromolecules, 2016, 49, 2112-2123.	2.2	15
25	Poly(<i>N</i> -alkyl-3,6-carbazole)s via Kumada Catalyst Transfer Polymerization: Impact of Metal–Halogen Exchange. Macromolecules, 2016, 49, 8801-8811.	2.2	5
26	Aryl-Decorated Ru ^{II} Polypyridyl-type Photosensitizer Approaching NIR Emission with Microsecond Excited State Lifetimes. Inorganic Chemistry, 2016, 55, 5405-5416.	1.9	26
27	How Does Peripheral Functionalization of Ruthenium(II)–Terpyridine Complexes Affect Spatial Charge Redistribution after Photoexcitation at the Franck–Condon Point?. ChemPhysChem, 2015, 16, 1395-1404.	1.0	34
28	Photoredox-active Dyads Based on a Ru(II) Photosensitizer Equipped with Electron Donor or Acceptor Polymer Chains: A Spectroscopic Study of Light-Induced Processes toward Efficient Charge Separation. Journal of Physical Chemistry C, 2015, 119, 4742-4751.	1.5	36
29	Anion Receptors Based on Halogen Bonding with Halo-1,2,3-triazoliums. Journal of Organic Chemistry, 2015, 80, 3139-3150.	1.7	97
30	Block Copolymers for Directional Charge Transfer: Synthesis, Characterization, and Electrochemical Properties of Redox-Active Triarylamines. Macromolecules, 2015, 48, 1963-1971.	2.2	13
31	Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coordination Chemistry Reviews, 2015, 304-305, 146-165.	9.5	55
32	Preorganization in a Cleft-Type Anion Receptor Featuring Iodo-1,2,3-Triazoles As Halogen Bond Donors. Organic Letters, 2015, 17, 5740-5743.	2.4	41
33	Designing Cyclometalated Ruthenium(II) Complexes for Anodic Electropolymerization. Chemistry - A European Journal, 2014, 20, 2357-2366.	1.7	23
34	Physicochemical Analysis of Ruthenium(II) Sensitizers of 1,2,3-Triazole-Derived Mesoionic Carbene and Cyclometalating Ligands. Inorganic Chemistry, 2014, 53, 2083-2095.	1.9	81
35	A Heteroleptic Bis(tridentate) Ruthenium(II) Platform Featuring an Anionic 1,2,3-Triazolate-Based Ligand for Application in the Dye-Sensitized Solar Cell. Inorganic Chemistry, 2014, 53, 1637-1645.	1.9	65
36	Pdâ€Catalyzed Ring Assembly by Vinylation and Intramolecular Heck Coupling: A Versatile Strategy Towards Functionalized Azadibenzocyclooctynes. Chemistry - A European Journal, 2013, 19, 2150-2157.	1.7	9

#	Article	IF	Citations
37	Cyclometalated Ruthenium(II) Complexes Featuring Tridentate Clickâ€Derived Ligands for Dyeâ€Sensitized Solar Cell Applications. Chemistry - A European Journal, 2013, 19, 14171-14180.	1.7	35
38	Nitroxide-Mediated Polymerization of Styrenic Triarylamines and Chain-End Functionalization with a Ruthenium Complex: Toward Tailored Photoredox-Active Architectures. Macromolecules, 2013, 46, 2039-2048.	2.2	26
39	Tuning the Electronics of Bis(tridentate)ruthenium(II) Complexes with Long-Lived Excited States: Modifications to the Ligand Skeleton beyond Classical Electron Donor or Electron Withdrawing Group Decorations. Inorganic Chemistry, 2013, 52, 5128-5137.	1.9	40
40	Emitting electrode coatings with redox-switchable conductivity: incorporation of ruthenium(ii)-2,6-di(quinolin-8-yl)pyridine complexes into polythiophene by electropolymerization. RSC Advances, 2013, 3, 11686.	1.7	13
41	Linear Metallopolymers from Ruthenium(II)â€2,6â€di(quinolinâ€8â€yl)pyridine Complexes by Electropolymerization – Formation of Redoxâ€Stable and Emissive Films. European Journal of Inorganic Chemistry, 2013, 2013, 4191-4202.	1.0	25
42	Poly(⟨i⟩ϵ⟨li⟩â€caprolactone) Decorated With One Roomâ€Temperature Redâ€Emitting Ruthenium(II) Complex: Synthesis, Characterization, Thermal and Optical Properties. Macromolecular Rapid Communications, 2012, 33, 579-584.	2.0	10
43	Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chemical Society Reviews, 2012, 41, 4755.	18.7	268
44	Tandem mass spectrometry of poly(ethylene imine)s by electrospray ionization (ESI) and matrixâ€essisted laser desorption/ionization (MALDI). Journal of Mass Spectrometry, 2012, 47, 105-114.	0.7	27
45	Linear Polyethyleneimine: Optimized Synthesis and Characterization – On the Way to "Pharmagrade― Batches. Macromolecular Chemistry and Physics, 2011, 212, 1918-1924.	1.1	44
46	Vectorial Electron Transfer in Donor–Photosensitizer–Acceptor Triads Based on Novel Bisâ€ŧridentate Ruthenium Polypyridyl Complexes. Chemistry - A European Journal, 2010, 16, 2830-2842.	1.7	46
47	Cyclometalated Ru ^{II} Complexes with Improved Octahedral Geometry: Synthesis and Photophysical Properties. Inorganic Chemistry, 2010, 49, 374-376.	1.9	56
48	A Concept to Tailor Electron Delocalization: Applying QTAIM Analysis to Phenylâ^'Terpyridine Compounds. Journal of Physical Chemistry A, 2010, 114, 13163-13174.	1.1	37
49	Facile Synthesis of Bistridentate Ru ^{II} Complexes Based on 2,6-Di(quinolin-8-yl)pyridyl Ligands: Sensitizers with Microsecond ³ MLCT Excited State Lifetimes. Inorganic Chemistry, 2009, 48, 3228-3238.	1.9	71
50	Bistridentate Ruthenium(II)polypyridyl-Type Complexes with Microsecond ³ MLCT State Lifetimes: Sensitizers for Rod-Like Molecular Arrays. Journal of the American Chemical Society, 2008, 130, 15533-15542.	6.6	177
51	Synthesis and Characterization of 2,6-Di(quinolin-8-yl)pyridines. New Ligands for Bistridentate Ru ^{II /sup> Complexes with Microsecond Luminescent Lifetimes. Journal of Organic Chemistry, 2007, 72, 10227-10230.}	1.7	56
52	A 3.0 μs Room Temperature Excited State Lifetime of a Bistridentate Rullâ "Polypyridine Complex for Rod-like Molecular Arrays. Journal of the American Chemical Society, 2006, 128, 12616-12617.	6.6	203
53	Regioselective Functionalization of Tetrabromophenanthrolineâ°'Ruthenium Complexes. European Journal of Inorganic Chemistry, 2004, 2004, 2001-2003.	1.0	20