Luca Pasquali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371995/publications.pdf

Version: 2024-02-01

186254 254170 137 2,636 28 43 citations h-index g-index papers 141 141 141 3330 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 2022, 21, 210-216.	27.5	146
2	The BEAR Beamline at Elettra. AIP Conference Proceedings, 2004, , .	0.4	139
3	Flame retarding poly(methyl methacrylate) with nanostructured organic–inorganic hybrids coatings. Polymer, 2003, 44, 4463-4470.	3.8	97
4	Prevention of plasticizer leaching from PVC medical devices by using organic–inorganic hybrid coatings. Polymer, 2004, 45, 805-813.	3.8	94
5	Perfluoropolyether-based organic–inorganic hybrid coatings. Polymer, 2006, 47, 1055-1062.	3.8	90
6	Surface Modification of ZnO(0001)–Zn with Phosphonate-Based Self-Assembled Monolayers: Binding Modes, Orientation, and Work Function. Chemistry of Materials, 2014, 26, 5042-5050.	6.7	66
7	Optical Constants of Ferromagnetic Iron via2pResonant Magnetic Scattering. Physical Review Letters, 1998, 81, 1521-1524.	7.8	64
8	UPS, XPS, and NEXAFS Study of Self-Assembly of Standing 1,4-Benzenedimethanethiol SAMs on Gold. Langmuir, 2011, 27, 4713-4720.	3.5	61
9	Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route. Journal of Materials Chemistry, 2005, 15, 1061.	6.7	58
10	Parallel-local anodic oxidation of silicon surfaces by soft stamps. Nanotechnology, 2008, 19, 435303.	2.6	55
11	The UHV Experimental Chamber For Optical Measurements (Reflectivity and Absorption) and Angle Resolved Photoemission of the BEAR Beamline at ELETTRA. AIP Conference Proceedings, 2004, , .	0.4	53
12	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	3.1	50
13	In-situ graphene oxide reduction during UV-photopolymerization of graphene oxide/acrylic resins mixtures. Polymer, 2012, 53, 6039-6044.	3.8	43
14	Adsorption geometry variation of 1,4-benzenedimethanethiol self-assembled monolayers on Au(111) grown from the vapor phase. Journal of Chemical Physics, 2008, 128, 134711.	3.0	42
15	New One-Step Thiol Functionalization Procedure for Ni by Self-Assembled Monolayers. Langmuir, 2015, 31, 3546-3552.	3.5	42
16	Calcium fluoride on Si(001): Adsorption mechanisms and epitaxial growth modes. Physical Review B, 2005, 72, .	3.2	39
17	Structural and electronic properties of anisotropic ultrathin organic films from dichroic resonant soft x-ray reflectivity. Physical Review B, 2014, 89, .	3.2	37
18	Spin-dependent electrochemistry: Enantio-selectivity driven by chiral-induced spin selectivity effect. Electrochimica Acta, 2018, 286, 271-278.	5.2	35

#	Article	IF	CITATIONS
19	Structure and properties of 1,4-benzenedimethanethiol films grown from solution on Au(111): An XPS and NEXAFS study. Surface Science, 2007, 601, 1419-1427.	1.9	34
20	New Insights on the Interaction between Thiophene Derivatives and Au Surfaces. The Case of 3,4-Ethylenedioxythiophene and the Relevant Polymer. Journal of Physical Chemistry C, 2011, 115, 17836-17844.	3.1	34
21	On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study. Journal of Chemical Physics, 2015, 143, 104702.	3.0	34
22	Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19134-19144.	8.0	34
23	Role of gallium diffusion in the formation of a magnetically dead layer at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>/</mml:mo><mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:mo>/<mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:< td=""><td>ıml224n>5< mml:mi>C</td><td>:/mæal:mn><!--<br-->Gd</td></mml:<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mo></mml:msub></mml:mrow></mml:math>	ıml 224 n>5< mml:mi>C	:/mæal:mn> <br Gd
24	Soft-x-ray resonant scattering from V/Fe (001) magnetic superlattices. Physical Review B, 1999, 60, R12569-R12572.	3.2	31
25	3-Methylthiophene Self-Assembled Monolayers on Planar and Nanoparticle Au Surfaces. Journal of Physical Chemistry B, 2005, 109, 19397-19402.	2.6	31
26	2D-MoS2 goes 3D: transferring optoelectronic properties of 2D MoS2 to a large-area thin film. Npj 2D Materials and Applications, 2021, 5, .	7.9	31
27	Structural analysis of Fe/Ni(001) films by photoelectron diffraction. Physical Review B, 2000, 61, 2246-2253.	3.2	30
28	Formation of CaF2nanostructures on Si(001). Nanotechnology, 2001, 12, 403-408.	2.6	29
29	Growth of <i>N</i> , <i>N</i> ′-Bis(1-ethylpropyl)perylene-3,4,9,10-tetracarboxdiimide Films on Ag (111). Journal of Physical Chemistry C, 2009, 113, 17866-17875.	3.1	29
30	Lying-Down to Standing-Up Transitions in Self Assembly of Butanedithiol Monolayers on Gold and Substitutional Assembly by Octanethiols. Journal of Physical Chemistry C, 2013, 117, 4625-4631.	3.1	29
31	Additive nanoscale embedding of functional nanoparticles on silicon surface. Nanoscale, 2010, 2, 2069.	5.6	27
32	1,4-Benzenedimethanethiol Interaction with Au(110), Ag(111), Cu(100), and Cu(111) Surfaces: Self-Assembly and Dissociation Processes. Journal of Physical Chemistry C, 2014, 118, 26866-26876.	3.1	26
33	Structural transition in Fe ultrathin epitaxial films grown on Ni(111). Physical Review B, 2002, 65, .	3.2	25
34	Analysis of External and Internal Disorder to Understand Bandâ€Like Transport in nâ€Type Organic Semiconductors. Advanced Materials, 2021, 33, 2007870.	21.0	24
35	GaAs(110) surface electronic structure by metastable deexcitation spectroscopy. Physical Review B, 1995, 52, 17335-17341.	3.2	23
36	Epitaxial growth of ultrathin Fe films on Ni(001): a structural study. Surface Science, 1999, 419, 207-215.	1.9	23

#	Article	IF	CITATIONS
37	Growth of Fe ultrathin films on Ni(111): structure and electronic properties. Surface Science, 2000, 454-456, 692-696.	1.9	22
38	And Yet it Moves! Microfluidics Without Channels and Troughs. Advanced Functional Materials, 2013, 23, 5543-5549.	14.9	22
39	Versatile and Scalable Strategy To Grow Sol–Gel Derived 2H-MoS ₂ Thin Films with Superior Electronic Properties: A Memristive Case. ACS Applied Materials & Diterfaces, 2018, 10, 34392-34400.	8.0	22
40	Is fibrous ferrierite a potential health hazard? Characterization and comparison with fibrous erionite. American Mineralogist, 2018, 103, 1044-1055.	1.9	21
41	Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study. Journal of Physics Condensed Matter, 2009, 21, 264005.	1.8	20
42	Oxygen Impurities Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability and Magnetoresistance in Organic Spin Valves. ACS Applied Materials & Link Bistability & Link Bista	8.0	20
43	Electronic structure of CuTPP and CuTPP(F) complexes: a combined experimental and theoretical study II. Physical Chemistry Chemical Physics, 2016, 18, 24890-24904.	2.8	19
44	Adsorption of 3,4-ethylenedioxythiophene (EDOT) on noble metal surfaces: A photoemission and X-ray absorption study. Journal of Electron Spectroscopy and Related Phenomena, 2009, 172, 114-119.	1.7	18
45	Redox-Active Ferrocene grafted on H-Terminated Si(111): Electrochemical Characterization of the Charge Transport Mechanism and Dynamics. Scientific Reports, 2019, 9, 8735.	3.3	18
46	Influence of size, shape and core–shell interface on surface plasmon resonance in Ag and Ag@MgO nanoparticle films deposited on Si/SiO x. Beilstein Journal of Nanotechnology, 2015, 6, 404-413.	2.8	17
47	Structure Model and Toxicity of the Product of Biodissolution of Chrysotile Asbestos in the Lungs. Chemical Research in Toxicology, 2019, 32, 2063-2077.	3.3	17
48	Characterization and assessment of the potential toxicity/pathogenicity of fibrous glaucophane. Environmental Research, 2019, 178, 108723.	7.5	17
49	Initial stages of MBE growth and formation of CaF2/Si(001) high-temperature interface. Applied Surface Science, 2004, 234, 480-486.	6.1	16
50	Interface Functionalities in Multilayer Stack Organic Light Emitting Transistors (OLETs). Advanced Functional Materials, 2014, 24, 5603-5613.	14.9	16
51	Quantitative resonant soft x-ray reflectivity of ultrathin anisotropic organic layers: Simulation and experiment of PTCDA on Au. Journal of Chemical Physics, 2016, 145, 024201.	3.0	16
52	Surface electronic structure of $Ge(111)$ from 300 to 1100 K by metastable deexcitation spectroscopy. Physical Review B, 1998, 57, 2507-2513.	3.2	15
53	Local structure at interfaces between hydride-forming metals: A case study of Mg-Pd nanoparticles by x-ray spectroscopy. Physical Review B, 2011, 83, .	3.2	15
54	Proximity effects and exchange bias in Co/MnF ₂ (111) heterostructures studied by x-ray magnetic circular dichroism. Journal of Physics Condensed Matter, 2013, 25, 046002.	1.8	15

#	Article	IF	CITATIONS
55	Wavy graphene sheets from electrochemical sewing of corannulene. Chemical Science, 2021, 12, 8048-8057.	7.4	15
56	Photon reflectivity distributions from the LHC beam screen and their implications on the arc beam vacuum system. Applied Surface Science, 2004, 235, 221-226.	6.1	14
57	Studies of the interface of conducting polymers with inorganic surfaces. Analytical and Bioanalytical Chemistry, 2013, 405, 1513-1535.	3.7	14
58	Influence of domestic and environmental weathering in the self-cleaning performance and durability of TiO2 photocatalytic coatings. Building and Environment, 2018, 132, 96-103.	6.9	14
59	Valence band states of H:GaAs(110). Surface Science, 1994, 307-309, 890-895.	1.9	13
60	Cobalt on calcium fluoride: Initial stages of growth and magnetic properties. Surface Science, 2006, 600, 4170-4175.	1.9	13
61	Interface chemistry and epitaxial growth modes of SrF2 on Si (001). Physical Review B, 2007, 75, .	3.2	13
62	Formation and distribution of compounds at the Ru–Si(001) ultrathin film interface. Journal of Applied Physics, 2009, 105, .	2.5	13
63	Ceriaâ€Containing Frit for Luster in Modern Ceramic Glaze. Journal of the American Ceramic Society, 2010, 93, 2545-2550.	3.8	13
64	Chalcogen Atom Interaction with Palladium and the Complex Molecule–Metal Interface in Thiol Self Assembly. Journal of Physical Chemistry C, 2014, 118, 24983-24994.	3.1	13
65	Electrochemical Fabrication of Surface Chemical Gradients in Thiol Self-Assembled Monolayers with Tailored Work-Functions. Langmuir, 2014, 30, 11591-11598.	3.5	13
66	Long-lived nonthermal electron distribution in aluminum excited by femtosecond extreme ultraviolet radiation. Physical Review B, 2017, 96, .	3.2	13
67	Ag(100) surface density of states probed by metastable deexcitation spectroscopy: A comparison between experiment and theory. Nuclear Instruments & Methods in Physics Research B, 2003, 212, 274-280.	1.4	12
68	Photoemission and X-ray Absorption Study of the Interface between 3,4-Ethylenedioxythiophene-Related Derivatives and Gold. Journal of Physical Chemistry C, 2012, 116, 15010-15018.	3.1	12
69	Correlation between crystal purity and the charge density wave in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>T</mml:mi>Physical Review Materials, 2020, 4, .</mml:mrow></mml:math>	⊘maml:mo:	∌£2°ler
70	Surface density of states of Sb/GaAs (110) and H:GaAs(110) by metastable deexcitation spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1995, 72, 59-63.	1.7	11
71	Adsorbate phase transformations and the coverage-dependent oscillation of electron transfer probabilities. Journal of Chemical Physics, 2000, 113, 2064-2067.	3.0	11
72	Interaction of hydrogen and oxygen with a chlorine covered Ag(111) surface. Surface Science, 2001, 480, L411-L419.	1.9	11

#	Article	IF	CITATIONS
73	Functionalization of SiC/SiO _{<i>x</i>} nanowires with a porphyrin derivative: a hybrid nanosystem for X-ray induced singlet oxygen generation. Molecular Systems Design and Engineering, 2017, 2, 165-172.	3.4	11
74	Magnetism and interlayer coupling in fcc Fe/Co films. Physical Review B, 2001, 63, .	3.2	10
75	Bonding and orientation of 1,4-benzenedimethanethiol on Au(111) prepared from solution and from gas phase. Journal of Physics Condensed Matter, 2007, 19, 305020.	1.8	10
76	High-temperature vesuvianite: crystal chemistry and surface considerations. Physics and Chemistry of Minerals, 2011, 38, 459-468.	0.8	10
77	XAS of tetrakis(phenyl)- and tetrakis(pentafluorophenyl)-porphyrin: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 2001-2011.	2.8	10
78	Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes. Beilstein Journal of Nanotechnology, 2016, 7, 263-277.	2.8	10
79	ZnO Functionalization: Metal–Dithiol Superstructures on ZnO(0001) by Self-Assembly. Journal of Physical Chemistry C, 2018, 122, 2880-2889.	3.1	10
80	Characterization and assessment of the potential toxicity/pathogenicity of Russian commercial chrysotile. American Mineralogist, 2021, 106, 1606-1621.	1.9	10
81	Electronic properties of CaF2 nanodimensional islands on Si(): An MDS and UPS study. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 474-479.	1.4	9
82	Metastable He deexcitation at semiconductor interfaces. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 340-350.	1.4	9
83	Lead Free Cuâ€Containing Frit for Modern Metallic Glaze. Journal of the American Ceramic Society, 2009, 92, 2784-2790.	3.8	9
84	Exchange Interactions Drive Supramolecular Chiral Induction in Polyaniline. Small Methods, 2020, 4, 2000617.	8.6	9
85	Enhancement of X-ray-Excited Red Luminescence of Chromium-Doped Zinc Gallate via Ultrasmall Silicon Carbide Nanocrystals. Chemistry of Materials, 2021, 33, 2457-2465.	6.7	9
86	Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy). Physics and Chemistry of Minerals, 2010, 37, 561-569.	0.8	8
87	Sodian muscovite-2M1: Crystal chemistry and surface features. Canadian Mineralogist, 2013, 51, 5-14.	1.0	8
88	High-Energy X-ray Photoemission and Structural Study of Ultrapure LaF3 Superionic Conductor Thin Films on Si. Journal of Physical Chemistry C, 2014, 118, 10122-10130.	3.1	8
89	Electrowetting of Nitro-Functionalized Oligoarylene Thiols Self-Assembled on Polycrystalline Gold. ACS Applied Materials & Diterfaces, 2015, 7, 3902-3909.	8.0	8
90	Synthesis, spectroscopic and electrochemical characterization of Co(II)-terpyridine based metallopolymer. Electrochimica Acta, 2018, 260, 314-323.	5.2	8

#	Article	IF	CITATIONS
91	A MDS study of the Yb/GaAs(110) interface. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 133-137.	1.7	7
92	Resonant scattering of polarized soft X-rays for the study of magnetic oxide layers. Journal of Electron Spectroscopy and Related Phenomena, 1999, 101-103, 407-412.	1.7	7
93	Structural analysis of epitaxial Fe films on Ni(001). Applied Surface Science, 2000, 162-163, 198-207.	6.1	7
94	Perfluoropolyether-Silica Hybrids: Preparation and Surface Characterization. Journal of Sol-Gel Science and Technology, 2005, 34, 155-163.	2.4	7
95	Inertial sensor surface properties for LISA Pathfinder and their effect on test mass discharging. Classical and Quantum Gravity, 2009, 26, 094008.	4.0	7
96	Crystal Chemistry and Surface Configurations of Two Iron-Bearing Trioctahedral Mica-1 <i>M</i> Polytypes. Clays and Clay Minerals, 2014, 62, 243-252.	1.3	7
97	Crystal chemistry and surface configurations of two polylithionite-1M crystals. American Mineralogist, 2014, 99, 2049-2059.	1.9	7
98	Spin dependent electrochemistry: Focus on chiral vs achiral charge transmission through 2D SAMs adsorbed on gold. Journal of Electroanalytical Chemistry, 2020, 856, 113705.	3.8	7
99	Surface phase transitions of $Ge(111)c(2\tilde{A}-8)$ studied by electron energy loss spectroscopy. Surface Science, 1997, 377-379, 534-538.	1.9	6
100	Positive ion neutralisation on chlorine covered silver surfaces. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 41-48.	1.4	6
101	Growth of epitaxial Yb silicide on Si(100) studied by metastable atom deexcitation spectroscopy and photemission. Physical Review B, 2002, 65, .	3.2	6
102	Chlorine-induced modifications in the electronic structure of Ag surfaces: a metastable deexcitation spectroscopy and photoemission comparative study. Journal of Physics Condensed Matter, 2003, 15, 3505-3516.	1.8	6
103	3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity. Applied Physics Letters, 2018, 112 , .	3.3	6
104	Understanding adhesion of gold conductive films on sodium-alginate by photoelectron spectroscopy. Thin Solid Films, 2019, 690, 137535.	1.8	6
105	Surface electronic properties by metastable deexcitation spectroscopy. Nuclear Instruments & Methods in Physics Research B, 2001, 182, 227-234.	1.4	5
106	Perfluoropolyether-based organic-inorganic hybrid coatings: Preparation and surface characterisation. Surface Coatings International Part B: Coatings Transactions, 2005, 88, 243-249.	0.3	5
107	A novel combined experimental and multiscale theoretical approach to unravel the structure of SiC/SiO _x core/shell nanowires for their optimal design. Nanoscale, 2018, 10, 13449-13461.	5.6	5
108	Analysis of Resonant Soft X-ray Reflectivity of Anisotropic Layered Materials. Surfaces, 2021, 4, 18-30.	2.3	5

#	Article	IF	Citations
109	Reactive and unreactive interfaces studied by means of metastable deexcitation spectroscopy. Surface Science, 1996, 352-354, 383-386.	1.9	4
110	EXAFS analysis of ultrathin Fe films grown on Ni(100). Surface Science, 2001, 487, 258-266.	1.9	4
111	Quantitative resonant soft x-ray reflectivity from an organic semiconductor single crystal. Journal of Chemical Physics, 2019, 150, 094707.	3.0	4
112	Ag/MgO Nanoparticles via Gas Aggregation Nanocluster Source for Perovskite Solar Cell Engineering. Materials, 2021, 14, 5507.	2.9	4
113	Characterization of Fibrous Wollastonite NYAD G in View of Its Use as Negative Standard for In Vitro Toxicity Tests. Minerals (Basel, Switzerland), 2021, 11, 1378.	2.0	4
114	Buried Interfaces Effects in Ionic Conductive LaF ₃ â€"SrF ₂ Multilayers. Advanced Materials Interfaces, 2017, 4, 1600875.	3.7	3
115	Controlling In-Plane Isotropic and Anisotropic Orientation of Organic Semiconductor Molecules on Ionic Fluoride Dielectrics. Journal of Physical Chemistry C, 2017, 121, 4426-4433.	3.1	3
116	Physical Synthesis and Study of Ag@CaF 2 Core@Shell Nanoparticles: Morphology and Tuning of Optical Properties. Physica Status Solidi (B): Basic Research, 2019, 256, 1800507.	1.5	3
117	Resonant Soft X-ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems. Magnetochemistry, 2021, 7, 136.	2.4	3
118	Growth of Yb silicide on Si(100): structure and electronic properties as a function of annealing temperature. Surface Science, 2001, 482-485, 817-822.	1.9	2
119	Oscillatory interlayer coupling mediated by fcc-Fe/Co(1 0 0) films. Applied Surface Science, 2001, 182, 302-307.	6.1	2
120	Interface magnetometry in a (Fe6Ã/Ni24Ã)10 multilayer. Applied Surface Science, 2001, 175-176, 281-287.	6.1	2
121	Highly luminescent yttria–silica core–shell nanoparticles by the sacrificial polymer shell method. Ceramics International, 2013, 39, 4513-4521.	4.8	2
122	Oligothiopheneâ€Based Phosphonates for Surface Modification of Ultraflat Transparent Conductive Oxides. Advanced Materials Interfaces, 2020, 7, 1902114.	3.7	2
123	Spin control using chiral templated nickel. Applied Physics Letters, 2021, 118, .	3.3	2
124	Production Strategies of TiNx Coatings via Reactive High Power Impulse Magnetron Sputtering for Selective H2 Separation. Membranes, 2021, 11, 360.	3.0	2
125	First-Principles Estimation of Core Level Shifts for Hf, Ta, W, and Re. Journal of Physical Chemistry C, 2022, 126, 9135-9142.	3.1	2
126	Molecular states of polyacenes grown on noble metal surfaces. Journal of Physics: Conference Series, 2008, 100, 052072.	0.4	1

#	Article	IF	CITATIONS
127	Atomic and electronic structure of ultrathin fluoride barrier layers at the oxide/Si interface. Journal of Physics Condensed Matter, 2011, 23, 355003.	1.8	1
128	Electrochemical method for pickling and passivation of austenitic steel welds. Corrosion Engineering Science and Technology, 2012, 47, 54-60.	1.4	1
129	Interpretation of linear dichroism at S L2,3 x-ray absorption edges of small organic molecules at surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 16-20.	1.7	1
130	Magnetic Depth Profiling of the Co/C60 Interface Through Soft X-Ray Resonant Magnetic Reflectivity. IEEE Transactions on Magnetics, 2020, 56, 1 -6.	2.1	1
131	Role of cobalt precursors in the synthesis of <scp> Co ₃ O ₄ </scp> hierarchical nanostructures toward the development of cobaltâ€based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media. Journal of the Chinese Chemical Society, 0, , .	1.4	1
132	Surface Optimization of Commercial Porous Ti Substrates by EPD of Titanium Nitride. Membranes, 2022, 12, 531.	3.0	1
133	X-ray magneto-optics and surface science (X-MOSS) beamline atELETTRA. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1998, 20, 1091-1101.	0.4	0
134	Resonant ionization+Auger neutralization in the study of the electronic structure of clean semiconductor surfaces. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 159-164.	1.7	0
135	Surface electronic states of Yb silicide ultrathin films studied with He metastable deexcitation spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2002, 127, 109-115.	1.7	O
136	Structural and photoemission studies of SrF2adsorption on Si(001). European Physical Journal Special Topics, 2006, 132, 35-39.	0.2	0
137	Adsorption and thermal stability of 1,4 benzenedimethanethiol on InP(110). Surface Science, 2017, 664, 101-109.	1.9	О