Renée D Jiji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 1999, 397, 61-72.	5.4	135
2	Mitigation of Rayleigh and Raman Spectral Interferences in Multiway Calibration of Excitationâ^'Emission Matrix Fluorescence Spectra. Analytical Chemistry, 2000, 72, 718-725.	6.5	93
3	Application of PARAFAC for calibration with excitation-emission matrix fluorescence spectra of three classes of environmental pollutants. Journal of Chemometrics, 2000, 14, 171-185.	1.3	83
4	Intermediacy of Poly(l-proline) II and β-Strand Conformations in Poly(l-lysine) β-Sheet Formation Probed by Temperature-Jump/UV Resonance Raman Spectroscopyâ€. Biochemistry, 2006, 45, 34-41.	2.5	75
5	Light emitting diode excitation emission matrix fluorescence spectroscopy. Analyst, The, 2002, 127, 1693-1699.	3.5	46
6	Evolution of quantitative methods in protein secondary structure determination via deep-ultraviolet resonance Raman spectroscopy. Analyst, The, 2012, 137, 555-562.	3.5	30
7	MCR-ALS analysis of two-way UV resonance Raman spectra to resolve discrete protein secondary structural motifs. Analyst, The, 2009, 134, 138-147.	3.5	24
8	Resolution of localized small molecule–Aβ interactions by deep-ultraviolet resonance Raman spectroscopy. Biophysical Chemistry, 2011, 158, 96-103.	2.8	24
9	Effects of cyproheptadine and cetirizine on eosinophilic airway inflammation in cats with experimentally induced asthma. American Journal of Veterinary Research, 2007, 68, 1265-1271.	0.6	22
10	Simultaneous Observation of Peptide Backbone Lipid Solvation and αâ€Helical Structure by Deepâ€UV Resonance Raman Spectroscopy. ChemBioChem, 2011, 12, 2125-2128.	2.6	21
11	Multivariate statistical process control for continuous monitoring of networked early warning fire detection (EWFD) systems. Sensors and Actuators B: Chemical, 2003, 93, 107-116.	7.8	20
12	Unwinding of the Substrate Transmembrane Helix inÂIntramembrane Proteolysis. Biophysical Journal, 2018, 114, 1579-1589.	0.5	20
13	Pre-processing of ultraviolet resonance Raman spectra. Analyst, The, 2011, 136, 1239.	3.5	19
14	Deep-UV Resonance Raman Analysis of theRhodobacter capsulatusCytochromebc1Complex Reveals a Potential Marker for the Transmembrane Peptide Backbone. Biochemistry, 2011, 50, 6531-6538.	2.5	19
15	Quantification of protein secondary structure content by multivariate analysis of deep-ultraviolet resonance Raman and circular dichroism spectroscopies. Analytical Methods, 2014, 6, 1691-1699.	2.7	19
16	Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. RSC Advances, 2013, 3, 17113.	3.6	13
17	A simple, low-cost, remote fiber-optic micro volume fluorescence flowcell for capillary flow-injection analysis. Analytical and Bioanalytical Chemistry, 2002, 374, 385-389.	3.7	12
18	Bilayer surface association of the pHLIP peptide promotes extensive backbone desolvation and helically-constrained structures. Biophysical Chemistry, 2014, 187-188, 1-6.	2.8	12

Renée D Jiji

#	Article	IF	CITATIONS
19	Hydrogen bonds are a primary driving force for <i>de novo</i> protein folding. Acta Crystallographica Section D: Structural Biology, 2017, 73, 955-969.	2.3	9
20	Influence of the lipid environment on valinomycin structure and cation complex formation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 200-206.	3.9	8
21	Observation of persistent αâ€helical content and discrete types of backbone disorder during a molten globule to ordered peptide transition via deepâ€UV resonance Raman spectroscopy. Journal of Raman Spectroscopy, 2013, 44, 957-962.	2.5	8
22	Role of Bilayer Characteristics on the Structural Fate of Aβ(1–40) and Aβ(25–40). Biochemistry, 2014, 53, 3004-3011.	2.5	8
23	"Parallel factor analysis of multi-excitation ultraviolet resonance Raman spectra for protein secondary structure determination― Analytica Chimica Acta, 2015, 892, 59-68.	5.4	8
24	Insights into the aggregation mechanism of Aβ(25–40). Biophysical Chemistry, 2017, 220, 42-48.	2.8	8
25	Application of EEM fluorescence in combination with PARAFAC analysis to simultaneously monitor quercetin in its deprotonated, aggregated, and protein bound states. Journal of Chemometrics, 2011, 25, 101-108.	1.3	7
26	On the freezing behavior and diffusion of water in proximity to single-supported zwitterionic and anionic bilayer lipid membranes. Europhysics Letters, 2014, 107, 28008.	2.0	7
27	Spectroscopic detection of <i>β</i> â€sheet structure in nascent Aβ oligomers. Journal of Biophotonics, 2011, 4, 637-644.	2.3	6
28	Effects of fluidity on the ensemble structure of a membrane embedded αâ€helical peptide. Biopolymers, 2014, 101, 895-902.	2.4	4
29	Fusing Spectral Data To Improve Protein Secondary Structure Analysis: Data Fusion. ACS Symposium Series, 2015, , 299-310.	0.5	1
30	Deepâ€UV resonance Raman spectroscopy of hydrated and dehydrated model αâ€helical transmembrane peptides in liposomes. Journal of Raman Spectroscopy, 0, , .	2.5	1
31	Hydrogen bonds are a primary driving force for <i>de novo</i> protein folding. Corrigendum. Acta Crystallographica Section D: Structural Biology, 2018, 74, 380-380.	2.3	1