
Iustinian Bejan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371785/publications.pdf Version: 2024-02-01

ILISTINIAN REIAN

#	Article	IF	CITATIONS
1	The photolysis of ortho-nitrophenols: a new gas phase source of HONO. Physical Chemistry Chemical Physics, 2006, 8, 2028.	1.3	221
2	Reactions of NO3 radicals with limonene and $\hat{l}\pm$ -pinene: Product and SOA formation. Atmospheric Environment, 2006, 40, 116-127.	1.9	122
3	The tropospheric degradation of isoprene: an updated module for the regional atmospheric chemistry mechanism. Atmospheric Environment, 2003, 37, 1503-1519.	1.9	114
4	Interferences of commercial NO ₂ instruments in the urban atmosphere and in a smog chamber. Atmospheric Measurement Techniques, 2012, 5, 149-159.	1.2	113
5	Investigations on the gas-phase photolysis and OH radical kinetics of methyl-2-nitrophenols. Physical Chemistry Chemical Physics, 2007, 9, 5686.	1.3	57
6	Temperature-dependent rate coefficients for the reactions of Cl atoms with methyl methacrylate, methyl acrylate and butyl methacrylate at atmospheric pressure. Atmospheric Environment, 2009, 43, 5996-6002.	1.9	54
7	Kinetic Study of the Gas-Phase Reactions of OH and NO3Radicals and O3with Selected Vinyl Ethers. Journal of Physical Chemistry A, 2006, 110, 7386-7392.	1.1	48
8	Direct measurements of OH and other product yields from the HO ₂ + CH ₃ C(O)O ₂ reaction. Atmospheric Chemistry and Physics, 2016, 16, 4023-4042.	1.9	46
9	Atmospheric Photooxidation of Fluoroacetates as a Source of Fluorocarboxylic Acids. Environmental Science & Technology, 2010, 44, 2354-2359.	4.6	45
10	OH-Initiated Degradation of Unsaturated Esters in the Atmosphere: Kinetics in the Temperature Range of 287â~'313 K. Journal of Physical Chemistry A, 2009, 113, 5958-5965.	1.1	44
11	Rate coefficients for the gas-phase reaction of NO3 radicals with selected dihydroxybenzenes. International Journal of Chemical Kinetics, 2004, 36, 577-583.	1.0	40
12	The Cl-initiated oxidation of CH3C(O)OCH=CH2, CH3C(O)OCH2CH=CH2, and CH2=CHC(O)O(CH2)3CH3 in the troposphere. Environmental Science and Pollution Research, 2009, 16, 641-648.	2.7	38
13	Atmospheric Chemistry of Acetylacetone. Environmental Science & amp; Technology, 2008, 42, 7905-7910.	4.6	33
14	Development of a new Long Path Absorption Photometer (LOPAP) instrument for the sensitive detection of NO ₂ in the atmosphere. Atmospheric Measurement Techniques, 2011, 4, 1663-1676.	1.2	31
15	Kinetics of the reactions of chlorine atoms with selected fluoroacetates at atmospheric pressure and 298K. Chemical Physics Letters, 2008, 453, 18-23.	1.2	30
16	Gas-phase reaction of (E)-Î ² -farnesene with ozone: Rate coefficient and carbonyl products. Atmospheric Environment, 2009, 43, 3182-3190.	1.9	29
17	Atmospheric degradation of alkylfurans with chlorine atoms: Product and mechanistic study. Atmospheric Environment, 2009, 43, 2804-2813.	1.9	28
18	Product Study of the OH, NO3, and O3Initiated Atmospheric Photooxidation of Propyl Vinyl Ether. Environmental Science & Technology, 2006, 40, 5415-5421.	4.6	27

Iustinian Bejan

#	Article	IF	CITATIONS
19	FT-IR Product Study of the Reactions of NO ₃ Radicals With <i>ortho</i> -, <i>meta</i> -, and <i>para</i> -Cresol. Environmental Science & Technology, 2013, 47, 7729-7738.	4.6	27
20	Temperature dependence of the gas-phase reactions of Cl atoms with propene and 1-butene between 285 <t< 10-13.<="" 2009,="" 313="" 484,="" chemical="" k.="" letters,="" physics="" td=""><td>1.2</td><td>26</td></t<>	1.2	26
21	Rate Coefficients for the Gas-Phase Reactions of Hydroxyl Radicals with a Series of Methoxylated Aromatic Compounds. Journal of Physical Chemistry A, 2015, 119, 6179-6187.	1.1	26
22	Rate Coefficients for the Gas-Phase Reaction of Chlorine Atoms with a Series of Methoxylated Aromatic Compounds. Journal of Physical Chemistry A, 2014, 118, 1777-1784.	1.1	25
23	Pressure-dependent calibration of the OH and HO ₂ channels of a FAGE HO _x instrument using the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC). Atmospheric Measurement Techniques, 2015, 8, 523-540.	1.2	25
24	Atmospheric Oxidation of Vinyl and Allyl Acetate: Product Distribution and Mechanisms of the OH-Initiated Degradation in the Presence and Absence of NO _{<i>x</i>} . Environmental Science & Technology, 2012, 46, 8817-8825.	4.6	23
25	Kinetics and Mechanisms of the Tropospheric Reactions of Menthol, Borneol, Fenchol, Camphor, and Fenchone with Hydroxyl Radicals (OH) and Chlorine Atoms (Cl). Journal of Physical Chemistry A, 2012, 116, 4097-4107.	1.1	23
26	Relative kinetic measurements of rate coefficients for the gas-phase reactions of Cl atoms and OH radicals with a series of methyl alkyl esters. Atmospheric Environment, 2010, 44, 5407-5414.	1.9	19
27	Products and Mechanism of the Reactions of OH Radicals and Cl Atoms with Methyl Methacrylate (CH ₂ â•C(CH ₃)C(O)OCH ₃) in the Presence of NOx. Environmental Science & Technology, 2014, 48, 1692-1699.	4.6	19
28	Revised structure activity parameters derived from new rate coefficient determinations for the reactions of chlorine atoms with a series of seven ketones at 290 K and 1 atm. Chemical Physics Letters, 2015, 640, 87-93.	1.2	16
29	Gas phase reaction of OH radicals with (E)-β-farnesene at 296±Â2ÂK: Rate coefficient and carbonyl products. Atmospheric Environment, 2012, 46, 338-345.	1.9	14
30	FTIR Product Distribution Study of the Cl and OH Initiated Degradation of Methyl Acrylate at Atmospheric Pressure. Environmental Science & Technology, 2010, 44, 7031-7036.	4.6	12
31	Total OH reactivity measurements in laboratory studies of the photooxidation of isoprene. Atmospheric Environment, 2012, 62, 243-247.	1.9	11
32	Kinetic Study of the Gas-Phase Reactions of Chlorine Atoms with 2-Chlorophenol, 2-Nitrophenol, and Four Methyl-2-nitrophenol Isomers. Journal of Physical Chemistry A, 2015, 119, 4735-4745.	1.1	11
33	Atmospheric Sink of (<i>E</i>)-3-Hexen-1-ol, (<i>Z</i>)-3-Hepten-1-ol, and (<i>Z</i>)-3-Octen-1-ol: Rate Coefficients and Mechanisms of the OH-Radical Initiated Degradation. Environmental Science & amp; Technology, 2015, 49, 7717-7725.	4.6	10
34	Daytime Reactions of 1,8 ineole in the Troposphere. ChemPhysChem, 2011, 12, 2145-2154.	1.0	8
35	Kinetics of the gasâ€phase reactions of OH radicals with a series of trimethylphenols. International Journal of Chemical Kinetics, 2012, 44, 117-124.	1.0	8
36	Tropospheric chemical degradation of vinyl and allyl acetate initiated by Cl atoms under high and low NO _x conditions. RSC Advances, 2015, 5, 48154-48163.	1.7	8

Iustinian Bejan

#	Article	IF	CITATIONS
37	Secondary Organic Aerosol Formation from Nitrophenols Photolysis under Atmospheric Conditions. Atmosphere, 2020, 11, 1346.	1.0	8
38	Kinetic Measurements of Cl Atom Reactions with C5–C8 Unsaturated Alcohols. Atmosphere, 2020, 11, 256.	1.0	8
39	Capillary Atmospheric Pressure Electron Capture Ionization (cAPECI): A Highly Efficient Ionization Method for Nitroaromatic Compounds. Journal of the American Society for Mass Spectrometry, 2014, 25, 329-342.	1.2	7
40	Rate coefficients at 298ÂK and 1Âatm for the tropospheric degradation of a series of C6, C7 and C8 biogenic unsaturated alcohols initiated by Cl atoms. Atmospheric Environment, 2014, 94, 564-572.	1.9	7
41	FTIR gas kinetic study of the reactions of ozone with a series of hexenols at atmospheric pressure and 298K. Chemical Physics Letters, 2015, 618, 114-118.	1.2	7
42	NO2 Measurement Techniques: Pitfalls and New Developments. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 15-28.	0.1	6
43	Development of a new LOPAP instrument for the detection of O3 in the atmosphere. Atmospheric Environment, 2013, 67, 112-119.	1.9	5
44	Gasâ€phase rate coefficients for a series of alkyl cyclohexanes with OH radicals and Cl atoms. International Journal of Chemical Kinetics, 2018, 50, 544-555.	1.0	5
45	Atmospheric oxidation of <i>l±</i> , <i>l²</i> -unsaturated ketones: kinetics and mechanism of the OH radical reaction. Atmospheric Chemistry and Physics, 2021, 21, 13667-13686.	1.9	5
46	Investigations into the gas-phase photolysis and OH radical kinetics of nitrocatechols: implications of intramolecular interactions on their atmospheric behaviour. Atmospheric Chemistry and Physics, 2022, 22, 2203-2219.	1.9	5
47	Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K. Physical Chemistry Chemical Physics, 2021, 23, 5176-5186.	1.3	3
48	Atmospheric fate of two relevant unsaturated ketoethers: kinetics, products and mechanisms for the reaction of hydroxyl radicals with (<i>E</i>)-4-methoxy-3-buten-2-one and (1 <i>E</i>)-1-methoxy-2-methyl-1-penten-3-one. Atmospheric Chemistry and Physics, 2020, 20, 8939-8951.	1.9	3
49	FT-IR Kinetic Study on the Gas-Phase Reactions of the OH Radical with a Series of Nitroaromatic Compounds. , 2006, , 155-162.		2
50	Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals. Atmospheric Chemistry and Physics, 2022, 22, 6989-7004.	1.9	2
51	Temperature dependent rate coefficients for the reaction of OH radicals with dimethylbenzoquinones. Chemical Physics Letters, 2015, 639, 145-150.	1.2	1
52	Atmospheric chemistry and the biosphere: general discussion. Faraday Discussions, 2017, 200, 195-228.	1.6	1
53	An Ionization Method Based on Photoelectron Induced Thermal Electron Generation: capillary Atmospheric Pressure Electron Capture Ionization (cAPECI). NATO Science for Peace and Security Series C: Environmental Security, 2013, , 239-248.	0.1	0