
Krishna Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371758/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Norepinephrine Stimulates Apoptosis in Adult Rat Ventricular Myocytes by Activation of the β-Adrenergic Pathway. Circulation, 1998, 98, 1329-1334.	1.6	681
2	Opposing Effects of β ₁ - and β ₂ -Adrenergic Receptors on Cardiac Myocyte Apoptosis. Circulation, 1999, 100, 2210-2212.	1.6	541
3	β-Adrenergic Receptor–Stimulated Apoptosis in Cardiac Myocytes Is Mediated by Reactive Oxygen Species/c-Jun NH 2 -Terminal Kinase–Dependent Activation of the Mitochondrial Pathway. Circulation Research, 2003, 92, 136-138.	2.0	235
4	Adrenergic regulation of cardiac myocyte apoptosis. Journal of Cellular Physiology, 2001, 189, 257-265.	2.0	203
5	Mice Lacking Inducible Nitric Oxide Synthase Have Improved Left Ventricular Contractile Function and Reduced Apoptotic Cell Death Late After Myocardial Infarction. Circulation Research, 2001, 89, 351-356.	2.0	145
6	Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: role of PKCα/β1and MAPKs. American Journal of Physiology - Cell Physiology, 2007, 292, C867-C875.	2.1	88
7	β1 Integrins Modulate β-Adrenergic Receptor–Stimulated Cardiac Myocyte Apoptosis and Myocardial Remodeling. Hypertension, 2007, 49, 865-872.	1.3	84
8	Regulation of angiotensin II-stimulated osteopontin expression in cardiac microvascular endothelial cells: Role of p42/44 mitogen-activated protein kinase and reactive oxygen species. Journal of Cellular Physiology, 2001, 188, 132-138.	2.0	76
9	Osteopontin Inhibits Interleukin-1β-stimulated Increases in Matrix Metalloproteinase Activity in Adult Rat Cardiac Fibroblasts. Journal of Biological Chemistry, 2003, 278, 48546-48552.	1.6	66
10	β-Adrenergic receptor-stimulated apoptosis in adult cardiac myocytes involves MMP-2-mediated disruption of β1 integrin signaling and mitochondrial pathway. American Journal of Physiology - Cell Physiology, 2006, 290, C254-C261.	2.1	65
11	Inhibition of matrix metalloproteinases improves left ventricular function in mice lacking osteopontin after myocardial infarction. Molecular and Cellular Biochemistry, 2009, 322, 53-62.	1.4	50
12	Glycogen synthase kinase-3β plays a pro-apoptotic role in β-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes: Role of β1 integrins. Journal of Molecular and Cellular Cardiology, 2007, 42, 653-661.	0.9	48
13	β-Adrenergic receptor stimulation induces endoplasmic reticulum stress in adult cardiac myocytes: role in apoptosis. Molecular and Cellular Biochemistry, 2012, 364, 59-70.	1.4	48
14	Extracellular ubiquitin inhibits Â-AR-stimulated apoptosis in cardiac myocytes: role of GSK-3Â and mitochondrial pathways. Cardiovascular Research, 2010, 86, 20-28.	1.8	44
15	Osteopontin: At the cross-roads of myocyte survival and myocardial function. Life Sciences, 2014, 118, 1-6.	2.0	42
16	Role of osteopontin in heart failure associated with aging. Heart Failure Reviews, 2010, 15, 487-494.	1.7	41
17	Osteopontin stimulates apoptosis in adult cardiac myocytes via the involvement of CD44 receptors, mitochondrial death pathway, and endoplasmic reticulum stress. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1182-H1191.	1.5	38
18	Deficiency of Ataxia Telangiectasia Mutated Kinase Modulates Cardiac Remodeling Following Myocardial Infarction: Involvement in Fibrosis and Apontosis, PLoS ONE, 2013, 8, e83513	1.1	35

Krishna Singh

#	Article	IF	CITATIONS
19	Osteopontin-stimulated apoptosis in cardiac myocytes involves oxidative stress and mitochondrial death pathway: role of a pro-apoptotic protein BIK. Molecular and Cellular Biochemistry, 2016, 418, 1-11.	1.4	30
20	Extracellular Ubiquitin Increases Expression of Angiogenic Molecules and Stimulates Angiogenesis in Cardiac Microvascular Endothelial Cells. Microcirculation, 2014, 21, 324-332.	1.0	29
21	NF2 signaling pathway plays a pro-apoptotic role in β-adrenergic receptor stimulated cardiac myocyte apoptosis. PLoS ONE, 2018, 13, e0196626.	1.1	25
22	Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Molecular and Cellular Biochemistry, 2011, 353, 13-22.	1.4	24
23	Downregulation of VEGFâ€D expression by interleukinâ€1β in cardiac microvascular endothelial cells is mediated by MAPKs and PKCα/l² ₁ . Journal of Cellular Physiology, 2008, 215, 337-343.	2.0	23
24	Exogenous ubiquitin modulates chronic β-adrenergic receptor-stimulated myocardial remodeling: role in Akt activity and matrix metalloproteinase expression. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1459-H1468.	1.5	23
25	Ataxia telangiectasia-mutated kinase deficiency exacerbates left ventricular dysfunction and remodeling late after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H445-H452.	1.5	22
26	Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H354-H367.	1.5	21
27	Exogenous ubiquitin reduces inflammatory response and preserves myocardial function 3 days post-ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H617-H628.	1.5	21
28	Expression of the cytoplasmic domain of β1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial death pathway. Basic Research in Cardiology, 2006, 101, 485-493.	2.5	17
29	Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. , 2015, 6, 527-560.		16
30	Extracellular ubiquitin modulates cardiac fibroblast phenotype and function via its interaction with CXCR4. Life Sciences, 2018, 211, 8-16.	2.0	16
31	Lack of ataxia telangiectasia mutated kinase induces structural and functional changes in the heart: role in βâ€adrenergic receptorâ€stimulated apoptosis. Experimental Physiology, 2012, 97, 506-515.	0.9	14
32	Inhibition of protein phosphatase 1 induces apoptosis in neonatal rat cardiac myocytes: role of adrenergic receptor stimulation. Basic Research in Cardiology, 2000, 95, 389-396.	2.5	11
33	Heart failure and diabetes: role of ATM. Current Opinion in Pharmacology, 2020, 54, 27-35.	1.7	11
34	Exogenous ubiquitin attenuates hypoxia/reoxygenation-induced cardiac myocyte apoptosis via the involvement of CXCR4 and modulation of mitochondrial homeostasis. Biochemistry and Cell Biology, 2020, 98, 492-501.	0.9	11
35	Ataxia telangiectasia mutated kinase deficiency impairs the autophagic response early during myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H48-H57.	1.5	10
36	Exacerbation of Celecoxib-Induced Renal Injury by Concomitant Administration of Misoprostol in Rats. PLoS ONE, 2014, 9, e89087.	1.1	8

Krishna Singh

#	Article	IF	CITATIONS
37	Confirmation of Myocardial Ischemia and Reperfusion Injury in Mice Using Surface Pad Electrocardiography. Journal of Visualized Experiments, 2016, , .	0.2	8
38	Deficiency of ataxia-telangiectasia mutated kinase modulates functional and biochemical parameters of the heart in response to Western-type diet. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H2324-H2338.	1.5	5
39	Cardioprotective Potential of Exogenous Ubiquitin. Cardiovascular Drugs and Therapy, 2021, 35, 1227-1232.	1.3	3
40	Ataxia-Telangiectasia Mutated Kinase: Role in Myocardial Remodeling. , 2017, 2, 32-37.		3
41	β-arrestin 2 attenuates cardiac dysfunction in polymicrobial sepsis through gp130 and p38. Biochemistry and Biophysics Reports, 2016, 7, 130-137.	0.7	2
42	Changes in Gene Expression during the Transition from Compensated Hypertrophy to Heart Failure. Heart Failure Reviews, 1999, 4, 361-378.	1.7	0
43	ATM plays a protective role in βâ€adrenergic receptor (βâ€AR)â€stimulated cardiac myocyte apoptosis and myocardial remodeling. FASEB Journal, 2009, 23, 953.13.	0.2	0
44	βâ€Adrenergic Receptor (βâ€AR)â€Stimulated Cardiac Myocyte Apoptosis and Myocardial Remodeling are Modulated by Exogenous Ubiquitin. FASEB Journal, 2012, 26, 1139.3.	0.2	0
45	Osteopontin Stimulates Cardiac Myocyte Apoptosis via the Involvement of ER Stress and Mitochondrial Death Pathway. FASEB Journal, 2013, 27, 727.3.	0.2	0
46	Osteopontinâ€Stimulated Apoptosis in Cardiac Myocytes Involves Reactive Oxygen Species and Mitochondrial Pathway. FASEB Journal, 2015, 29, 975.4.	0.2	0
47	Extracellular Ubiquitin Modulates Cardiac Fibroblast Phenotype and Function. FASEB Journal, 2015, 29, 671.4.	0.2	0