Peter Edward Urwin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7371288/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward genetic modification of plant-parasitic nematodes: delivery of macromolecules to adults and expression of exogenous mRNA in second stage juveniles. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
2	The influence of competing root symbionts on belowâ€ground plant resource allocation. Ecology and Evolution, 2021, 11, 2997-3003.	0.8	5
3	The GpIA7 effector from the potato cyst nematode <i>Globodera pallida</i> targets potato EBP1 and interferes with the plant cell cycle. Journal of Experimental Botany, 2021, 72, 7301-7315.	2.4	4
4	Next-generation sequencing of the soil nematode community enables the sustainability of banana plantations to be monitored. Applied Soil Ecology, 2021, 166, 103999.	2.1	4
5	Improving a pest management tool for scenario analysis of economic populations of Globodera pallida. Nematology, 2021, 24, 401-411.	0.2	2
6	Identification and characterisation of serotonin signalling in the potato cyst nematode Globodera pallida reveals new targets for crop protection. PLoS Pathogens, 2020, 16, e1008884.	2.1	9
7	Title is missing!. , 2020, 16, e1008884.		0
8	Title is missing!. , 2020, 16, e1008884.		0
9	Title is missing!. , 2020, 16, e1008884.		0
10	Title is missing!. , 2020, 16, e1008884.		0
11	Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnology Journal, 2018, 16, 520-529.	4.1	22
12	Host-specific signatures of the cell wall changes induced by the plant parasitic nematode, Meloidogyne incognita. Scientific Reports, 2018, 8, 17302.	1.6	39
13	Duplication of hsp-110 Is Implicated in Differential Success of Globodera Species under Climate Change. Molecular Biology and Evolution, 2018, 35, 2401-2413.	3.5	11
14	Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genetics, 2018, 14, e1007310.	1.5	44
15	Climate change is predicted to alter the current pest status of <i>Globodera pallida</i> and <i>G.Ârostochiensis</i> in the United Kingdom. Global Change Biology, 2017, 23, 4497-4507.	4.2	41
16	The Complex Cell Wall Composition of Syncytia Induced by Plant Parasitic Cyst Nematodes Reflects Both Function and Host Plant. Frontiers in Plant Science, 2017, 8, 1087.	1.7	21
17	Expression of a Cystatin Transgene in Eggplant Provides Resistance to Root-knot Nematode, Meloidogyne incognita. Frontiers in Plant Science, 2016, 7, 1122.	1.7	40
18	Functional Câ€TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved <i>de novo</i> in the plant parasite <i>Rotylenchulus reniformis</i> . Molecular Plant Pathology, 2016, 17, 1265-1275.	2.0	38

Peter Edward Urwin

1

#	Article	IF	CITATIONS
19	The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biology, 2016, 17, 124.	3.8	156
20	The Response of Plants to Simultaneous Biotic and Abiotic Stress. , 2015, , 181-201.		20
21	Field resistance of transgenic plantain to nematodes has potential for future African food security. Scientific Reports, 2015, 5, 8127.	1.6	50
22	Reduction of phytate by down-regulation of Arabidopsis thaliana MIPS and IPK1 genes alters susceptibility to beet cyst nematodes. Nematology, 2015, 17, 401-407.	0.2	8
23	NHR-176 regulates <i>cyp-35d1</i> to control hydroxylation-dependent metabolism of thiabendazole in <i>Caenorhabditis elegans</i> . Biochemical Journal, 2015, 466, 37-44.	1.7	26
24	Identification and Characterisation of a Hyper-Variable Apoplastic Effector Gene Family of the Potato Cyst Nematodes. PLoS Pathogens, 2014, 10, e1004391.	2.1	82
25	Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida. BMC Genomics, 2014, 15, 923.	1.2	81
26	The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biology, 2014, 15, R43.	13.9	212
27	The Feeding Tube of Cyst Nematodes: Characterisation of Protein Exclusion. PLoS ONE, 2014, 9, e87289.	1.1	14
28	Adaptive and Specialised Transcriptional Responses to Xenobiotic Stress in Caenorhabditis elegans Are Regulated by Nuclear Hormone Receptors. PLoS ONE, 2013, 8, e69956.	1.1	39
29	The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 2012, 63, 3523-3543.	2.4	1,484
30	Generation of transgenic plantain (<i>Musa</i> spp.) with resistance to plant pathogenic nematodes. Molecular Plant Pathology, 2012, 13, 842-851.	2.0	60
31	Transgenic Potatoes for Potato Cyst Nematode Control Can Replace Pesticide Use without Impact on Soil Quality. PLoS ONE, 2012, 7, e30973.	1.1	32
32	C. elegans as a Resource for Studies on Plant Parasitic Nematodes. , 2011, , 175-220.		10
33	A Synthetic Peptide Shows Retro- and Anterograde Neuronal Transport before Disrupting the Chemosensation of Plant-Pathogenic Nematodes. PLoS ONE, 2011, 6, e17475.	1.1	19
34	Effective delivery of a nematodeâ€repellent peptide using a rootâ€capâ€specific promoter. Plant Biotechnology Journal, 2011, 9, 151-161.	4.1	38
35	Nematode resistance. New Phytologist, 2008, 180, 27-44.	3.5	201

The Potential of Rna Interference for the Management of Phytoparasitic Nematodes. , 2008, , 185-203.

Peter Edward Urwin

#	Article	IF	CITATIONS
37	Differential gene expression in Arabidopsis following infection by plantâ€parasitic nematodes <i>Meloidogyne incognita</i> and <i>Heterodera schachtii</i> . Molecular Plant Pathology, 2007, 8, 595-609.	2.0	61
38	Recent progress in the development of RNA interference for plant parasitic nematodes. Molecular Plant Pathology, 2007, 8, 701-711.	2.0	84
39	The production of synthetic chemodisruptive peptidesin plantadisrupts the establishment of cyst nematodes. Plant Biotechnology Journal, 2005, 3, 487-496.	4.1	48
40	Molecular aspects of cyst nematodes. Molecular Plant Pathology, 2005, 6, 577-588.	2.0	88
41	RNA interference and plant parasitic nematodes. Trends in Plant Science, 2005, 10, 362-367.	4.3	86
42	Preferential expression of a plant cystatin at nematode feeding sites confers resistance to Meloidogyne incognita and Globodera pallida. Plant Biotechnology Journal, 2004, 2, 3-12.	4.1	65
43	Title is missing!. Molecular Breeding, 2003, 12, 263-269.	1.0	59
44	ENGINEERINGPLANTS FORNEMATODERESISTANCE. Annual Review of Phytopathology, 2003, 41, 615-639.	3.5	102
45	Effective transgenic resistance to Globodera pallida in potato field trials. Molecular Breeding, 2001, 8, 95-101.	1.0	64
46	Title is missing!. Molecular Breeding, 2000, 6, 257-264.	1.0	57
47	Transgenic Arabidopsis leaf tissue expressing a modified oryzacystatin shows resistance to the field slug Deroceras reticulatum (Müller). Transgenic Research, 1999, 8, 95-103.	1.3	37
48	Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta, 1998, 204, 472-479.	1.6	156
49	Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant Journal, 1997, 12, 455-461.	2.8	181
50	Designs for engineered resistance to root-parasitic nematodes. Trends in Biotechnology, 1995, 13, 369-374.	4.9	68
51	Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant Journal, 1995, 8, 121-131.	2.8	236