Edward H Sargent

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7370530/edward-h-sargent-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

674	83,242 citations	147	27 1
papers		h-index	g-index
735	100,470 ext. citations	17.8	8.49
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
674	All-perovskite tandem solar cells with improved grain surface passivation <i>Nature</i> , 2022 ,	50.4	112
673	Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting <i>Nature Biomedical Engineering</i> , 2022 ,	19	2
672	Conjugated polymers with controllable interfacial order and energetics enable tunable heterojunctions in organic and colloidal quantum dot photovoltaics. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1788-1801	13	2
671	Concentrated Ethanol Electrosynthesis from CO via a Porous Hydrophobic Adlayer <i>ACS Applied Materials & Description of the Content of the C</i>	9.5	3
6 7 0	A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation <i>Nature Communications</i> , 2022 , 13, 819	17.4	15
669	Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. <i>Nature Catalysis</i> , 2022 , 5, 185-	-13 5 825	2
668	Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. <i>Nature Energy</i> , 2022 , 7, 130-143	62.3	33
667	Wide-Bandgap Perovskite Quantum Dots in Perovskite Matrix for Sky-Blue Light-Emitting Diodes Journal of the American Chemical Society, 2022 ,	16.4	22
666	Controlled Crystal Plane Orientations in ZnO Transport Layer enables High Responsivity, Low Dark Current Infrared Photodetectors <i>Advanced Materials</i> , 2022 , e2200321	24	4
665	In-situ inorganic ligand replenishment enables bandgap stability in mixed-halide perovskite quantum dot solids <i>Advanced Materials</i> , 2022 , e2200854	24	11
664	Rapid On-Cell Selection of High-Performance Human Antibodies ACS Central Science, 2022, 8, 102-109	16.8	1
663	Au/TiO 2 2D-Photonic Crystals as UVII isible Photocatalysts for H 2 Production. <i>Advanced Energy Materials</i> , 2022 , 12, 2103733	21.8	2
662	Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. <i>ACS Applied Materials & Different pH Environments</i> . <i>ACS Applied Materials & Different pH Environments</i> .) 2-5 37	1 <i>ể</i>
661	Monitoring of Cardiac Disease with Reagent-free Molecular Pendulum Aptasensors. <i>ECS Meeting Abstracts</i> , 2021 , MA2021-02, 1563-1563	О	
660	Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites. <i>Journal of the American Chemical Society,</i> 2021 , 143, 19901-19908	16.4	5
659	Distribution control enables efficient reduced-dimensional perovskite LEDs. <i>Nature</i> , 2021 , 599, 594-598	50.4	81
658	Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing. <i>Nano Letters</i> , 2021 , 21, 9754-9760	11.5	3

(2021-2021)

657	A microfluidic platform enables comprehensive gene expression profiling of mouse retinal stem cells. <i>Lab on A Chip</i> , 2021 , 21, 4464-4476	7.2	O
656	Thiophene- and selenophene-based conjugated polymeric mixed ionic/electronic conductors. <i>Journal of Chemical Physics</i> , 2021 , 155, 134704	3.9	O
655	Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17226-17235	16.4	7
654	Boride-derived oxygen-evolution catalysts. <i>Nature Communications</i> , 2021 , 12, 6089	17.4	11
653	Solvent-Assisted Kinetic Trapping in Quaternary Perovskites. <i>Advanced Materials</i> , 2021 , 33, e2008690	24	1
652	Reagentless biomolecular analysis using a molecular pendulum. <i>Nature Chemistry</i> , 2021 , 13, 428-434	17.6	20
651	Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. <i>Joule</i> , 2021 , 5, 706-719	27.8	31
650	Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1,550[hm. <i>Matter</i> , 2021 , 4, 1042-1053	12.7	25
649	Stabilizing Highly Active Ru Sites by Suppressing Lattice Oxygen Participation in Acidic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 6482-6490	16.4	38
648	Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning. <i>Nature Communications</i> , 2021 , 12, 2191	17.4	26
647	Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films. <i>ACS Applied Materials & Dot Films</i> . <i>ACS Applied Materials & Dot Films</i> . <i>ACS Applied Materials & Dot Films</i> .	9.5	O
646	Electro-Optic Modulation Using Metal-Free Perovskites. <i>ACS Applied Materials & Description</i> (1984) 13, 19042-19047	9.5	3
645	Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. <i>Nature Communications</i> , 2021 , 12, 2808	17.4	19
644	Low coordination number copper catalysts for electrochemical CO methanation in a membrane electrode assembly. <i>Nature Communications</i> , 2021 , 12, 2932	17.4	27
643	Nanocrystal Quantum Dot Devices: How the Lead Sulfide (PbS) System Teaches Us the Importance of Surfaces. <i>Chimia</i> , 2021 , 75, 398-413	1.3	5
642	Gold-in-copper at low *CO coverage enables efficient electromethanation of CO. <i>Nature Communications</i> , 2021 , 12, 3387	17.4	20
641	All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized EcsPbI3 Perovskite. <i>Angewandte Chemie</i> , 2021 , 133, 16300-16306	3.6	1
640	CO electrolysis to multicarbon products in strong acid. <i>Science</i> , 2021 , 372, 1074-1078	33.3	115

639	Reply to: Perovskite decomposition and missing crystal planes in HRTEM. <i>Nature</i> , 2021 , 594, E8-E9	50.4	
638	Multication perovskite 2D/3D interfaces form via progressive dimensional reduction. <i>Nature Communications</i> , 2021 , 12, 3472	17.4	24
637	All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized EcsPbI Perovskite. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16164-16170	16.4	59
636	Toward Stable Monolithic Perovskite/Silicon Tandem Photovoltaics: A Six-Month Outdoor Performance Study in a Hot and Humid Climate. <i>ACS Energy Letters</i> , 2021 , 6, 2944-2951	20.1	9
635	Single Pass CO2 Conversion Exceeding 85% in the Electrosynthesis of Multicarbon Products via Local CO2 Regeneration. <i>ACS Energy Letters</i> , 2021 , 6, 2952-2959	20.1	27
634	Solvent Engineering of Colloidal Quantum Dot Inks for Scalable Fabrication of Photovoltaics. <i>ACS Applied Materials & Documents (Nature of Photovoltaics)</i> 13, 36992-37003	9.5	4
633	Tracking the expression of therapeutic protein targets in rare cells by antibody-mediated nanoparticle labelling and magnetic sorting. <i>Nature Biomedical Engineering</i> , 2021 , 5, 41-52	19	17
632	CO2 Electroreduction to Formate at a Partial Current Density of 930 mA cm2 with InP Colloidal Quantum Dot Derived Catalysts. <i>ACS Energy Letters</i> , 2021 , 6, 79-84	20.1	39
631	Electrochemical upgrade of CO2 from amine capture solution. <i>Nature Energy</i> , 2021 , 6, 46-53	62.3	36
630	Deep-Blue Perovskite Single-Mode Lasing through Efficient Vapor-Assisted Chlorination. <i>Advanced Materials</i> , 2021 , 33, e2006697	24	17
629	Linear Electro-Optic Modulation in Highly Polarizable Organic Perovskites. <i>Advanced Materials</i> , 2021 , 33, e2006368	24	8
628	3D-Printable Fluoropolymer Gas Diffusion Layers for CO Electroreduction. <i>Advanced Materials</i> , 2021 , 33, e2003855	24	24
627	Detection of SARS-CoV-2 Viral Particles Using Direct, Reagent-Free Electrochemical Sensing. Journal of the American Chemical Society, 2021 , 143, 1722-1727	16.4	70
626	Accurate and Affordable Explicit Solvent Quantum Mechanics for Electrocatalysis Investigations. <i>Matter</i> , 2021 , 4, 12-14	12.7	1
625	An antibonding valence band maximum enables defect-tolerant and stable GeSe photovoltaics. <i>Nature Communications</i> , 2021 , 12, 670	17.4	16
624	Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. <i>Nature Energy</i> , 2021 , 6, 167-175	62.3	76
623	Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2, 12-16	22.8	38
622	Ethylene Electrosynthesis: A Comparative Techno-economic Analysis of Alkaline vs Membrane Electrode Assembly vs CO211O112H4 Tandems. ACS Energy Letters, 2021, 6, 997-1002	20.1	33

(2021-2021)

621	Band Engineering via Gradient Molecular Dopants for CsFA Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2010572	15.6	3
620	Self-Cleaning CO2 Reduction Systems: Unsteady Electrochemical Forcing Enables Stability. <i>ACS Energy Letters</i> , 2021 , 6, 809-815	20.1	56
619	Designing anion exchange membranes for CO2 electrolysers. <i>Nature Energy</i> , 2021 , 6, 339-348	62.3	56
618	Grain Transformation and Degradation Mechanism of Formamidinium and Cesium Lead Iodide Perovskite under Humidity and Light. <i>ACS Energy Letters</i> , 2021 , 6, 934-940	20.1	28
617	Gold Adparticles on Silver Combine Low Overpotential and High Selectivity in Electrochemical CO2 Conversion. <i>ACS Applied Energy Materials</i> , 2021 , 4, 7504-7512	6.1	4
616	Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors. <i>Advanced Materials</i> , 2021 , 33, e2101056	24	13
615	Boosting photoelectrochemical efficiency by near-infrared-active lattice-matched morphological heterojunctions. <i>Nature Communications</i> , 2021 , 12, 4296	17.4	4
614	Ligand Exchange at a Covalent Surface Enables Balanced Stoichiometry in III-V Colloidal Quantum Dots. <i>Nano Letters</i> , 2021 , 21, 6057-6063	11.5	7
613	One-Step Synthesis of SnI[(DMSO) Adducts for High-Performance Tin Perovskite Solar Cells. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10970-10976	16.4	89
612	Passivation of the Buried Interface via Preferential Crystallization of 2D Perovskite on Metal Oxide Transport Layers. <i>Advanced Materials</i> , 2021 , 33, e2103394	24	25
611	Reducing the crossover of carbonate and liquid products during carbon dioxide electroreduction. <i>Cell Reports Physical Science</i> , 2021 , 2, 100522	6.1	8
610	Advances in solution-processed near-infrared light-emitting diodes. <i>Nature Photonics</i> , 2021 , 15, 656-66	933.9	25
609	Quantum Dot Self-Assembly Enables Low-Threshold Lasing. <i>Advanced Science</i> , 2021 , 8, e2101125	13.6	12
608	Semiconductor quantum dots: Technological progress and future challenges. <i>Science</i> , 2021 , 373,	33.3	138
607	Colloidal quantum dot electronics. <i>Nature Electronics</i> , 2021 , 4, 548-558	28.4	49
606	Abnormal Phase Transition and Band Renormalization of Guanidinium-Based Organic-Inorganic Hybrid Perovskite. <i>ACS Applied Materials & Mate</i>	9.5	2
605	In Situ Formation of Nano Ni-Co Oxyhydroxide Enables Water Oxidation Electrocatalysts Durable at High Current Densities. <i>Advanced Materials</i> , 2021 , 33, e2103812	24	20
604	Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. <i>Joule</i> , 2021 ,	27.8	5

603	Stable, active CO reduction to formate via redox-modulated stabilization of active sites. <i>Nature Communications</i> , 2021 , 12, 5223	17.4	25
602	Bright and Stable Light-Emitting Diodes Based on Perovskite Quantum Dots in Perovskite Matrix. Journal of the American Chemical Society, 2021 , 143, 15606-15615	16.4	22
601	Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. <i>Light: Science and Applications</i> , 2021 , 10, 180	16.7	8
600	Ultrasensitive Detection and Depletion of Rare Leukemic B Cells in T Cell Populations via Immunomagnetic Cell Ranking. <i>Analytical Chemistry</i> , 2021 , 93, 2327-2335	7.8	3
599	Control Over Ligand Exchange Reactivity in Hole Transport Layer Enables High-Efficiency Colloidal Quantum Dot Solar Cells. <i>ACS Energy Letters</i> , 2021 , 6, 468-476	20.1	14
598	Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber B osch processes?. <i>Energy and Environmental Science</i> , 2021 , 14, 2535-2548	35.4	36
597	Intermediate Binding Control Using Metal-Organic Frameworks Enhances Electrochemical CO Reduction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 21513-21521	16.4	50
596	InP-Quantum-Dot-in-ZnS-Matrix Solids for Thermal and Air Stability. <i>Chemistry of Materials</i> , 2020 , 32, 9584-9590	9.6	2
595	Nanostructured Architectures Promote the Mesenchymal-Epithelial Transition for Invasive Cells. <i>ACS Nano</i> , 2020 , 14, 5324-5336	16.7	7
594	Metal-Free Hydrogen-Bonded Polymers Mimic Noble Metal Electrocatalysts. <i>Advanced Materials</i> , 2020 , 32, e1902177	24	10
593	Crystal Site Feature Embedding Enables Exploration of Large Chemical Spaces. <i>Matter</i> , 2020 , 3, 433-448	312.7	17
592	Mechanisms of LiF Interlayer Enhancements of Perovskite Light-Emitting Diodes. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4213-4220	6.4	5
591	Thiophene Cation Intercalation to Improve Band-Edge Integrity in Reduced-Dimensional Perovskites. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 13977-13983	16.4	16
590	Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. <i>Nature Energy</i> , 2020 , 5, 478-486	62.3	163
589	Thiophene Cation Intercalation to Improve Band-Edge Integrity in Reduced-Dimensional Perovskites. <i>Angewandte Chemie</i> , 2020 , 132, 14081-14087	3.6	5
588	Ultrasensitive and rapid quantification of rare tumorigenic stem cells in hPSC-derived cardiomyocyte populations. <i>Science Advances</i> , 2020 , 6, eaay7629	14.3	14
587	Accelerated discovery of CO electrocatalysts using active machine learning. <i>Nature</i> , 2020 , 581, 178-183	50.4	328
586	Multiple Self-Trapped Emissions in the Lead-Free Halide CsCul. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 4326-4330	6.4	40

(2020-2020)

585	High-Throughput Screening of Antisolvents for the Deposition of High-Quality Perovskite Thin Films. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 26026-26032	9.5	3
584	Colloidal Quantum Dot Photovoltaics Using Ultrathin, Solution-Processed Bilayer In2O3/ZnO Electron Transport Layers with Improved Stability. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5135-5141	6.1	5
583	Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. <i>Science</i> , 2020 , 368, 1228-1233	33.3	78
582	Near infrared organic photodetectors based on enhanced charge transfer state absorption by photonic architectures. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 9688-9696	7.1	8
581	Micron Thick Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2020 , 20, 5284-5291	11.5	23
580	Stable, Bromine-Free, Tetragonal Perovskites with 1.7 eV Bandgaps via A-Site Cation Substitution 2020 , 2, 869-872		9
579	Colloidal Quantum Dot Bulk Heterojunction Solids with Near-Unity Charge Extraction Efficiency. <i>Advanced Science</i> , 2020 , 7, 2000894	13.6	10
578	Dimensional Mixing Increases the Efficiency of 2D/3D Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 5115-5119	6.4	22
577	Monolayer Perovskite Bridges Enable Strong Quantum Dot Coupling for Efficient Solar Cells. <i>Joule</i> , 2020 , 4, 1542-1556	27.8	85
576	A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e1906199	24	38
575	Single-Precursor Intermediate Shelling Enables Bright, Narrow Line Width InAs/InZnP-Based QD Emitters. <i>Chemistry of Materials</i> , 2020 , 32, 2919-2925	9.6	6
574	Chloride Insertion-Immobilization Enables Bright, Narrowband, and Stable Blue-Emitting Perovskite Diodes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5126-5134	16.4	61
573	Chiral-perovskite optoelectronics. <i>Nature Reviews Materials</i> , 2020 , 5, 423-439	73.3	191
572	Machine-Learning-Accelerated Perovskite Crystallization. <i>Matter</i> , 2020 , 2, 938-947	12.7	45
571	Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. <i>Science</i> , 2020 , 367, 1135-1140	33.3	298
570	Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems. <i>Nature Communications</i> , 2020 , 11, 1257	17.4	114
569	Conventional Solvent Oxidizes Sn(II) in Perovskite Inks. ACS Energy Letters, 2020, 5, 1153-1155	20.1	57
568	Regulating strain in perovskite thin films through charge-transport layers. <i>Nature Communications</i> , 2020 , 11, 1514	17.4	165

567	Solution-processed upconversion photodetectors based on quantum dots. <i>Nature Electronics</i> , 2020 , 3, 251-258	28.4	59
566	Templated-Assembly of CsPbBr Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17750-17756	16.4	44
565	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. <i>Nature Nanotechnology</i> , 2020 , 15, 668-674	28.7	281
564	Template-basierte Herstellung von 2D-photonischen Superkristallen mit verstekter spontaner Emission aus CsPbBr3-Perowskit-Nanokristallen. <i>Angewandte Chemie</i> , 2020 , 132, 17903-17909	3.6	4
563	CO electrolysis to multicarbon products at activities greater than 1 A cm. <i>Science</i> , 2020 , 367, 661-666	33.3	403
562	Combining Efficiency and Stability in Mixed Tin-Lead Perovskite Solar Cells by Capping Grains with an Ultrathin 2D Layer. <i>Advanced Materials</i> , 2020 , 32, e1907058	24	92
561	Multi-cation perovskites prevent carrier reflection from grain surfaces. <i>Nature Materials</i> , 2020 , 19, 412-	-41 /8	52
560	Molecular enhancement of heterogeneous CO reduction. <i>Nature Materials</i> , 2020 , 19, 266-276	27	195
559	Enhanced Nitrate-to-Ammonia Activity on Copper-Nickel Alloys via Tuning of Intermediate Adsorption. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5702-5708	16.4	192
558	Solvent-Solute Coordination Engineering for Efficient Perovskite Luminescent Solar Concentrators. <i>Joule</i> , 2020 , 4, 631-643	27.8	28
557	High Color Purity Lead-Free Perovskite Light-Emitting Diodes via Sn Stabilization. <i>Advanced Science</i> , 2020 , 7, 1903213	13.6	85
556	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. <i>ACS Energy Letters</i> , 2020 , 5, 793-798	20.1	100
555	Heterogeneous Supersaturation in Mixed Perovskites. <i>Advanced Science</i> , 2020 , 7, 1903166	13.6	8
554	Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns. ACS Nano, 2020, 14, 3426-3433	16.7	26
553	Molecular tuning of CO-to-ethylene conversion. <i>Nature</i> , 2020 , 577, 509-513	50.4	321
552	Permanent Lattice Compression of Lead-Halide Perovskite for Persistently Enhanced Optoelectronic Properties. <i>ACS Energy Letters</i> , 2020 , 5, 642-649	20.1	21
551	Hydration-Effect-Promoting Ni-Fe Oxyhydroxide Catalysts for Neutral Water Oxidation. <i>Advanced Materials</i> , 2020 , 32, e1906806	24	33
550	Efficient Methane Electrosynthesis Enabled by Tuning Local CO Availability. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3525-3531	16.4	65

(2020-2020)

549	Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices. <i>Nano Letters</i> , 2020 , 20, 1468-1474	11.5	21
548	Regioselective magnetization in semiconducting nanorods. <i>Nature Nanotechnology</i> , 2020 , 15, 192-197	28.7	25
547	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. <i>Nature Energy</i> , 2020 , 5, 131-140	62.3	552
546	Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. <i>Nature Photonics</i> , 2020 , 14, 227-233	33.9	91
545	Transition Dipole Moments of = 1, 2, and 3 Perovskite Quantum Wells from the Optical Stark Effect and Many-Body Perturbation Theory. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 716-723	6.4	14
544	Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density. <i>Nano Letters</i> , 2020 , 20, 3694-3702	11.5	27
543	Optimizing Solid-State Ligand Exchange for Colloidal Quantum Dot Optoelectronics: How Much Is Enough?. <i>ACS Applied Energy Materials</i> , 2020 , 3, 5385-5392	6.1	21
542	Large area metasurfaces made with spherical silicon resonators. <i>Nanophotonics</i> , 2020 , 9, 943-951	6.3	6
541	Cooperative CO2-to-ethanol conversion via enriched intermediates at moleculeThetal catalyst interfaces. <i>Nature Catalysis</i> , 2020 , 3, 75-82	36.5	164
540	Stabilizing Surface Passivation Enables Stable Operation of Colloidal Quantum Dot Photovoltaic Devices at Maximum Power Point in an Air Ambient. <i>Advanced Materials</i> , 2020 , 32, e1906497	24	23
539	Edge stabilization in reduced-dimensional perovskites. <i>Nature Communications</i> , 2020 , 11, 170	17.4	79
538	Oxygen-tolerant electroproduction of C2 products from simulated flue gas. <i>Energy and Environmental Science</i> , 2020 , 13, 554-561	35.4	45
537	Efficient electrocatalytic conversion of carbon dioxide in a low-resistance pressurized alkaline electrolyzer. <i>Applied Energy</i> , 2020 , 261, 114305	10.7	30
536	Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. <i>Nature Catalysis</i> , 2020 , 3, 98-106	36.5	158
535	Spatial Collection in Colloidal Quantum Dot Solar Cells. Advanced Functional Materials, 2020, 30, 19082	00 5.6	14
534	Tuning OH binding energy enables selective electrochemical oxidation of ethylene to ethylene glycol. <i>Nature Catalysis</i> , 2020 , 3, 14-22	36.5	41
533	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. <i>Nature Photonics</i> , 2020 , 14, 171-176	33.9	144
532	Nanostructured Architectures for Biomolecular Detection inside and outside the Cell. <i>Advanced Functional Materials</i> , 2020 , 30, 1907701	15.6	12

531	Narrow Emission from Rb3Sb2I9 Nanoparticles. Advanced Optical Materials, 2020, 8, 1901606	8.1	16
530	Cascade surface modification of colloidal quantum dot inks enables efficient bulk homojunction photovoltaics. <i>Nature Communications</i> , 2020 , 11, 103	17.4	110
529	High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. <i>Nature Catalysis</i> , 2020 , 3, 985-992	36.5	149
528	All-Perovskite Tandem Solar Cells: A Roadmap to Uniting High Efficiency with High Stability. <i>Accounts of Materials Research</i> , 2020 , 1, 63-76	7.5	28
527	Naphthalenediimide Cations Inhibit 2D Perovskite Formation and Facilitate Subpicosecond Electron Transfer. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24379-24390	3.8	9
526	Color-pure red light-emitting diodes based on two-dimensional lead-free perovskites. <i>Science Advances</i> , 2020 , 6,	14.3	52
525	Autonomous atmospheric water seeping MOF matrix. Science Advances, 2020, 6,	14.3	44
524	All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. <i>Nature Energy</i> , 2020 , 5, 870-880	62.3	233
523	Chelating-agent-assisted control of CsPbBr quantum well growth enables stable blue perovskite emitters. <i>Nature Communications</i> , 2020 , 11, 3674	17.4	45
522	Magnetic Ranking Cytometry: Profiling Rare Cells at the Single-Cell Level. <i>Accounts of Chemical Research</i> , 2020 , 53, 1445-1457	24.3	5
521	Promoting CO methanation via ligand-stabilized metal oxide clusters as hydrogen-donating motifs. <i>Nature Communications</i> , 2020 , 11, 6190	17.4	30
520	Structural Distortion and Bandgap Increase of Two-Dimensional Perovskites Induced by Trifluoromethyl Substitution on Spacer Cations. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 10144-1	09149	7
519	Bioinspiration in light harvesting and catalysis. <i>Nature Reviews Materials</i> , 2020 , 5, 828-846	73.3	54
518	Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. <i>Nature Communications</i> , 2020 , 11, 3685	17.4	28
517	High-Throughput Nanofabrication of Metasurfaces with Polarization-Dependent Response. <i>Advanced Optical Materials</i> , 2020 , 8, 2000786	8.1	8
516	A Multi-functional Molecular Modifier Enabling Efficient Large-Area Perovskite Light-Emitting Diodes. <i>Joule</i> , 2020 , 4, 1977-1987	27.8	70
515	Bifunctional Surface Engineering on SnO2 Reduces Energy Loss in Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2020 , 5, 2796-2801	20.1	104
514	High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. <i>ACS Energy Letters</i> , 2020 , 5, 3034-3040	20.1	65

(2019-2020)

513	High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer. <i>ACS Energy Letters</i> , 2020 , 5, 2811-2818	20.1	39
512	Bromine Incorporation and Suppressed Cation Rotation in Mixed-Halide Perovskites. <i>ACS Nano</i> , 2020 , 14, 15107-15118	16.7	10
511	A Tuned Alternating D-A Copolymer Hole-Transport Layer Enables Colloidal Quantum Dot Solar Cells with Superior Fill Factor and Efficiency. <i>Advanced Materials</i> , 2020 , 32, e2004985	24	25
510	Colloidal Quantum Dot Solar Cell Band Alignment using Two-Step Ionic Doping 2020 , 2, 1583-1589		6
509	Efficient and Stable Colloidal Quantum Dot Solar Cells with a Green-Solvent Hole-Transport Layer. <i>Advanced Energy Materials</i> , 2020 , 10, 2002084	21.8	9
508	Orthogonal colloidal quantum dot inks enable efficient multilayer optoelectronic devices. <i>Nature Communications</i> , 2020 , 11, 4814	17.4	19
507	Monolithic Organic/Colloidal Quantum Dot Hybrid Tandem Solar Cells via Buffer Engineering. <i>Advanced Materials</i> , 2020 , 32, e2004657	24	7
506	Perovskite Single-Crystal Thin Film Devices Using Lithography Assisted Epitaxy. <i>Matter</i> , 2020 , 3, 619-620	012.7	2
505	CO2 Electroreduction to Methane at Production Rates Exceeding 100 mA/cm2. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 14668-14673	8.3	14
504	Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability. <i>Advanced Functional Materials</i> , 2020 , 30, 2005155	15.6	11
503	Suppression of Auger Recombination by Gradient Alloying in InAs/CdSe/CdS QDs. <i>Chemistry of Materials</i> , 2020 , 32, 7703-7709	9.6	4
502	Active Sulfur Sites in Semimetallic Titanium Disulfide Enable CO2 Electroreduction. <i>ACS Catalysis</i> , 2020 , 10, 66-72	13.1	16
501	Directional Light Emission from Layered Metal Halide Perovskite Crystals. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 3458-3465	6.4	16
500	Mixed Lead Halide Passivation of Quantum Dots. <i>Advanced Materials</i> , 2019 , 31, e1904304	24	42
499	Continuous Carbon Dioxide Electroreduction to Concentrated Multi-carbon Products Using a Membrane Electrode Assembly. <i>Joule</i> , 2019 , 3, 2777-2791	27.8	155
498	Machine Learning Accelerates Discovery of Optimal Colloidal Quantum Dot Synthesis. <i>ACS Nano</i> , 2019 , 13, 11122-11128	16.7	52
497	High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. <i>Nature Biomedical Engineering</i> , 2019 , 3, 796-805	19	32
496	Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors. <i>ACS Nano</i> , 2019 , 13, 11988-11995	16.7	55

495	Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. <i>Nature Energy</i> , 2019 , 4, 197-205	62.3	87
494	Learning-in-Templates Enables Accelerated Discovery and Synthesis of New Stable Double Perovskites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3682-3690	16.4	17
493	Enhanced Electrochemical Reduction of CO2 Catalyzed by Cobalt and Iron Amino Porphyrin Complexes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 1330-1335	6.1	43
492	CO2 Electroreduction from Carbonate Electrolyte. ACS Energy Letters, 2019 , 4, 1427-1431	20.1	66
491	Nanostructured Back Reflectors for Efficient Colloidal Quantum-Dot Infrared Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1901745	24	36
490	Highly Passivated n-Type Colloidal Quantum Dots for Solution-Processed Thermoelectric Generators with Large Output Voltage. <i>Advanced Energy Materials</i> , 2019 , 9, 1901244	21.8	9
489	Suppressed Ion Migration in Reduced-Dimensional Perovskites Improves Operating Stability. <i>ACS Energy Letters</i> , 2019 , 4, 1521-1527	20.1	89
488	Tuning Solute-Redistribution Dynamics for Scalable Fabrication of Colloidal Quantum-Dot Optoelectronics. <i>Advanced Materials</i> , 2019 , 31, e1805886	24	20
487	Energy Selects. ACS Energy Letters, 2019, 4, 1455-1457	20.1	4
486	Lattice anchoring stabilizes solution-processed semiconductors. <i>Nature</i> , 2019 , 570, 96-101	50.4	149
486 485	Lattice anchoring stabilizes solution-processed semiconductors. <i>Nature</i> , 2019 , 570, 96-101 Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591	50.4 16.4	
	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical</i>		
485	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591 Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models	16.4	178
485 484	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591 Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166 Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids.	16.4	178 396
485 484 483	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591 Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166 Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. <i>Nanoscale</i> , 2019 , 11, 10774-10781 Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap	16.4 24 7.7 20.1	178 396 12
485 484 483 482	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591 Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166 Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. <i>Nanoscale</i> , 2019 , 11, 10774-10781 Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. <i>ACS Energy Letters</i> , 2019 , 4, 1225-1230 Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. <i>Journal of the</i>	16.4 24 7.7 20.1	178 396 12
485 484 483 482 481	Binding Site Diversity Promotes CO Electroreduction to Ethanol. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8584-8591 Electrochemical CO Reduction into Chemical Feedstocks: From Mechanistic Electrocatalysis Models to System Design. <i>Advanced Materials</i> , 2019 , 31, e1807166 Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids. <i>Nanoscale</i> , 2019 , 11, 10774-10781 Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks. <i>ACS Energy Letters</i> , 2019 , 4, 1225-1230 Anchored Ligands Facilitate Efficient B-Site Doping in Metal Halide Perovskites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8296-8305 Reducing Defects in Halide Perovskite Nanocrystals for Light-Emitting Applications. <i>Journal of</i>	16.4 24 7.7 20.1 16.4	178 396 12 30 32

(2019-2019)

477	A Facet-Specific Quantum Dot Passivation Strategy for Colloid Management and Efficient Infrared Photovoltaics. <i>Advanced Materials</i> , 2019 , 31, e1805580	24	55
476	Contactless measurements of photocarrier transport properties in perovskite single crystals. Nature Communications, 2019 , 10, 1591	17.4	35
475	N-heterocyclic carbene-functionalized magic-number gold nanoclusters. <i>Nature Chemistry</i> , 2019 , 11, 419-425	17.6	185
474	In Situ Back-Contact Passivation Improves Photovoltage and Fill Factor in Perovskite Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1807435	24	112
473	Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. <i>Nature Catalysis</i> , 2019 , 2, 251-258	36.5	111
472	Electro-Optic Modulation in Hybrid Metal Halide Perovskites. <i>Advanced Materials</i> , 2019 , 31, e1808336	24	26
471	Potential-Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. <i>Angewandte Chemie</i> , 2019 , 131, 14661-14665	3.6	2
470	Energy Level Tuning at the MAPbI3 Perovskite/Contact Interface Using Chemical Treatment. <i>ACS Energy Letters</i> , 2019 , 4, 2181-2184	20.1	31
469	Photochemically Cross-Linked Quantum Well Ligands for 2D/3D Perovskite Photovoltaics with Improved Photovoltage and Stability. <i>Journal of the American Chemical Society</i> , 2019 , 141, 14180-14189	16.4	67
468	Ligand-Induced Surface Charge Density Modulation Generates Local Type-II Band Alignment in Reduced-Dimensional Perovskites. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13459-13467	16.4	41
467	Potential-Responsive Surfaces for Manipulation of Cell Adhesion, Release, and Differentiation. Angewandte Chemie - International Edition, 2019 , 58, 14519-14523	16.4	23
466	Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. <i>ACS Nano</i> , 2019 , 13, 10662-10670	16.7	46
465	Temperature-Induced Self-Compensating Defect Traps and Gain Thresholds in Colloidal Quantum Dots. <i>ACS Nano</i> , 2019 , 13, 8970-8976	16.7	7
464	Thermal unequilibrium of strained black CsPbI thin films. <i>Science</i> , 2019 , 365, 679-684	33.3	272
463	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. <i>Joule</i> , 2019 , 3, 1963-1976	27.8	154
462	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. <i>Joule</i> , 2019 , 3, 1703-1718	27.8	78
461	Designing materials for electrochemical carbon dioxide recycling. <i>Nature Catalysis</i> , 2019 , 2, 648-658	36.5	442
460	Accelerated solution-phase exchanges minimize defects in colloidal quantum dot solids. <i>Nano Energy</i> , 2019 , 63, 103876	17.1	6

459	Dopant-tuned stabilization of intermediates promotes electrosynthesis of valuable C3 products. <i>Nature Communications</i> , 2019 , 10, 4807	17.4	13
458	Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines. <i>Advanced Materials</i> , 2019 , 31, e1903559	24	85
457	Spectrally Tunable and Stable Electroluminescence Enabled by Rubidium Doping of CsPbBr3 Nanocrystals. <i>Advanced Optical Materials</i> , 2019 , 7, 1901440	8.1	31
456	Peptide-Functionalized Nanostructured Microarchitectures Enable Rapid Mechanotransductive Differentiation. <i>ACS Applied Materials & Differentiation</i> , 11, 41030-41037	9.5	5
455	Ultrahigh resolution and color gamut with scattering-reducing transmissive pixels. <i>Nature Communications</i> , 2019 , 10, 4782	17.4	16
454	Halogen Vacancies Enable Ligand-Assisted Self-Assembly of Perovskite Quantum Dots into Nanowires. <i>Angewandte Chemie</i> , 2019 , 131, 16223-16227	3.6	13
453	Suppressing Interfacial Dipoles to Minimize Open-Circuit Voltage Loss in Quantum Dot Photovoltaics. <i>Advanced Energy Materials</i> , 2019 , 9, 1901938	21.8	8
452	Halogen Vacancies Enable Ligand-Assisted Self-Assembly of Perovskite Quantum Dots into Nanowires. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16077-16081	16.4	32
451	Low-Temperature-Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. <i>Advanced Energy Materials</i> , 2019 , 9, 1803049	21.8	11
450	Colloidal-quantum-dot-in-perovskite nanowires. <i>Infrared Physics and Technology</i> , 2019 , 98, 16-22	2.7	14
449	Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. <i>Nature Communications</i> , 2019 , 10, 5814	17.4	95
448	Solution-processed perovskite-colloidal quantum dot tandem solar cells for photon collection beyond 1000 nm. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26020-26028	13	30
447	Efficient upgrading of CO to C fuel using asymmetric C-C coupling active sites. <i>Nature Communications</i> , 2019 , 10, 5186	17.4	55
446	Efficient hybrid colloidal quantum dot/organic solar cells mediated by near-infrared sensitizing small molecules. <i>Nature Energy</i> , 2019 , 4, 969-976	62.3	78
445	Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. <i>Nature Catalysis</i> , 2019 , 2, 1124-1131	36.5	89
444	Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. <i>Nature Energy</i> , 2019 , 4, 864-873	62.3	463
443	Boosting the Single-Pass Conversion for Renewable Chemical Electrosynthesis. <i>Joule</i> , 2019 , 3, 13-15	27.8	26
442	Spectrally Resolved Ultrafast Exciton Transfer in Mixed Perovskite Quantum Wells. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 419-426	6.4	53

(2018-2019)

441	Electrocatalytic Rate Alignment Enhances Syngas Generation. Joule, 2019, 3, 257-264	27.8	40
440	Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. <i>Nature Energy</i> , 2019 , 4, 107-114	62.3	264
439	Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination. <i>Nature Photonics</i> , 2018 , 12, 159-164	33.9	206
438	Hydronium-Induced Switching between CO Electroreduction Pathways. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3833-3837	16.4	100
437	Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. <i>Nature Communications</i> , 2018 , 9, 1607	17.4	218
436	2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. <i>Nature Nanotechnology</i> , 2018 , 13, 456-462	28.7	196
435	Chemical-to-Electricity Carbon: Water Device. Advanced Materials, 2018, 30, e1707635	24	32
434	Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. <i>Angewandte Chemie</i> , 2018 , 130, 3773-3778	3.6	9
433	Imaging Heterogeneously Distributed Photo-Active Traps in Perovskite Single Crystals. <i>Advanced Materials</i> , 2018 , 30, e1705494	24	22
432	Synthetic Control over Quantum Well Width Distribution and Carrier Migration in Low-Dimensional Perovskite Photovoltaics. <i>Journal of the American Chemical Society</i> , 2018 , 140, 2890-2896	16.4	211
431	Profiling circulating tumour cells and other biomarkers of invasive cancers. <i>Nature Biomedical Engineering</i> , 2018 , 2, 72-84	19	128
430	Combinatorial Probes for High-Throughput Electrochemical Analysis of Circulating Nucleic Acids in Clinical Samples. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 3711-3716	16.4	41
429	Electro-optic Response in Germanium Halide Perovskites. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 1018-1027	6.4	24
428	Amide-Catalyzed Phase-Selective Crystallization Reduces Defect Density in Wide-Bandgap Perovskites. <i>Advanced Materials</i> , 2018 , 30, e1706275	24	62
427	Excitonic Creation of Highly Luminescent Defects In Situ in Working Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1700856	8.1	5
426	Ultrathin Semiconductor Superabsorbers from the Visible to the Near-Infrared. <i>Advanced Materials</i> , 2018 , 30, 1705876	24	24
425	Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. <i>Nature Catalysis</i> , 2018 , 1, 103-110	36.5	479
424	Hybrid Tandem Quantum Dot/Organic Solar Cells with Enhanced Photocurrent and Efficiency via Ink and Interlayer Engineering. <i>ACS Energy Letters</i> , 2018 , 3, 1307-1314	20.1	26

423	Solution-Processed In2O3/ZnO Heterojunction Electron Transport Layers for Efficient Organic Bulk Heterojunction and Inorganic Colloidal Quantum-Dot Solar Cells. <i>Solar Rrl</i> , 2018 , 2, 1800076	7.1	32
422	What Should We Make with CO2 and How Can We Make It?. Joule, 2018, 2, 825-832	27.8	546
421	Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. <i>Nano Letters</i> , 2018 , 18, 3157-3164	11.5	160
420	Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. <i>Nature Chemistry</i> , 2018 , 10, 489-495	17.6	52
419	Colloidal quantum dot solar cell electrical parameter non-destructive quantitative imaging using high-frequency heterodyne lock-in carrierography and photocarrier radiometry. <i>Solar Energy Materials and Solar Cells</i> , 2018 , 174, 405-411	6.4	13
418	The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance. <i>Advanced Materials</i> , 2018 , 30, 1700764	24	101
417	Curvature-Mediated Surface Accessibility Enables Ultrasensitive Electrochemical Human Methyltransferase Analysis. <i>ACS Sensors</i> , 2018 , 3, 1765-1772	9.2	8
416	Dipolar cations confer defect tolerance in wide-bandgap metal halide perovskites. <i>Nature Communications</i> , 2018 , 9, 3100	17.4	171
415	Dopant-induced electron localization drives CO reduction to C hydrocarbons. <i>Nature Chemistry</i> , 2018 , 10, 974-980	17.6	435
414	Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. <i>Nature Energy</i> , 2018 , 3, 648-654	62.3	355
413	Spin control in reduced-dimensional chiral perovskites. <i>Nature Photonics</i> , 2018 , 12, 528-533	33.9	205
412	Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. <i>ACS Nano</i> , 2018 , 12, 8531-8539	16.7	162
411	Metal-Organic Frameworks Mediate Cu Coordination for Selective CO Electroreduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11378-11386	16.4	188
410	2D Metal Oxyhalide-Derived Catalysts for Efficient CO Electroreduction. <i>Advanced Materials</i> , 2018 , 30, e1802858	24	123
409	Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	30
408	Steering post-CII coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. <i>Nature Catalysis</i> , 2018 , 1, 421-428	36.5	348
407	Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2018 , 18, 4417-4423	11.5	37
406	Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. <i>Energy and Environmental Science</i> , 2018 , 11, 2531-2539	35.4	147

(2018-2018)

405	Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. <i>Nature Chemistry</i> , 2018 , 10, 149-154	17.6	328
404	Prismatic Deflection of Live Tumor Cells and Cell Clusters. ACS Nano, 2018, 12, 12692-12700	16.7	14
403	Pulsed axial epitaxy of colloidal quantum dots in nanowires enables facet-selective passivation. <i>Nature Communications</i> , 2018 , 9, 4947	17.4	15
402	Infrared Cavity-Enhanced Colloidal Quantum Dot Photovoltaics Employing Asymmetric Multilayer Electrodes. <i>ACS Energy Letters</i> , 2018 , 3, 2908-2913	20.1	12
401	Efficient and stable emission of warm-white light from lead-free halide double perovskites. <i>Nature</i> , 2018 , 563, 541-545	50.4	835
400	Precise Control of Thermal and Redox Properties of Organic Hole-Transport Materials. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 15529-15533	16.4	26
399	Precise Control of Thermal and Redox Properties of Organic Hole-Transport Materials. <i>Angewandte Chemie</i> , 2018 , 130, 15755-15759	3.6	7
398	Multibandgap quantum dot ensembles for solar-matched infrared energy harvesting. <i>Nature Communications</i> , 2018 , 9, 4003	17.4	39
397	Single-Cell Tumbling Enables High-Resolution Size Profiling of Retinal Stem Cells. <i>ACS Applied Materials & Acs Applied & Acs Ap</i>	9.5	7
396	Butylamine-Catalyzed Synthesis of Nanocrystal Inks Enables Efficient Infrared CQD Solar Cells. <i>Advanced Materials</i> , 2018 , 30, e1803830	24	48
395	A Surface Reconstruction Route to High Productivity and Selectivity in CO Electroreduction toward C Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, e1804867	24	131
394	Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. <i>Nature</i> , 2018 , 562, 245-248	50.4	1802
393	The quantum-confined Stark effect in layered hybrid perovskites mediated by orientational polarizability of confined dipoles. <i>Nature Communications</i> , 2018 , 9, 4214	17.4	35
392	Picosecond Charge Transfer and Long Carrier Diffusion Lengths in Colloidal Quantum Dot Solids. <i>Nano Letters</i> , 2018 , 18, 7052-7059	11.5	42
391	Copper adparticle enabled selective electrosynthesis of n-propanol. <i>Nature Communications</i> , 2018 , 9, 4614	17.4	86
390	High Rate, Selective, and Stable Electroreduction of CO2 to CO in Basic and Neutral Media. <i>ACS Energy Letters</i> , 2018 , 3, 2835-2840	20.1	136
389	Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. <i>Nature Catalysis</i> , 2018 , 1, 946-951	36.5	205
388	A water-processable cellulose-based resist for advanced nanofabrication. <i>Nanoscale</i> , 2018 , 10, 17884-1	7 89 2	11

387	Programmable Metal/Semiconductor Nanostructures for mRNA-Modulated Molecular Delivery. <i>Nano Letters</i> , 2018 , 18, 6222-6228	11.5	26
386	Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO. <i>Nature Communications</i> , 2018 , 9, 3828	17.4	164
385	Challenges for commercializing perovskite solar cells. <i>Science</i> , 2018 , 361,	33.3	853
384	Examining Structure P roperty E unction Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers. <i>ACS Applied Energy Materials</i> , 2018 , 1, 5033-5042	6.1	17
383	Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nature Materials, 2018, 17, 900-907	27	252
382	Perovskites for Light Emission. <i>Advanced Materials</i> , 2018 , 30, e1801996	24	270
381	Solar Cells: Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). <i>Advanced Materials</i> , 2018 , 30, 1870260	24	3
380	Color-stable highly luminescent sky-blue perovskite light-emitting diodes. <i>Nature Communications</i> , 2018 , 9, 3541	17.4	370
379	Activated Electron-Transport Layers for Infrared Quantum Dot Optoelectronics. <i>Advanced Materials</i> , 2018 , 30, e1801720	24	34
378	A fully-integrated and automated testing device for PCR-free viral nucleic acid detection in whole blood. <i>Lab on A Chip</i> , 2018 , 18, 1928-1935	7.2	15
377	CO electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. <i>Science</i> , 2018 , 360, 783-787	33.3	980
376	Electron-phonon interaction in efficient perovskite blue emitters. <i>Nature Materials</i> , 2018 , 17, 550-556	27	310
375	Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides. <i>ACS Energy Letters</i> , 2018 , 3, 1492-1498	20.1	56
374	Overcoming the Ambient Manufacturability-Scalability-Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. <i>Advanced Materials</i> , 2018 , 30, e1801661	24	58
373	Solution-processed semiconductors for next-generation photodetectors. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	674
372	Compound Homojunction:Heterojunction Reduces Bulk and Interface Recombination in ZnO Photoanodes for Water Splitting. <i>Small</i> , 2017 , 13, 1603527	11	21
371	High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection. <i>Nano Letters</i> , 2017 , 17, 1289-1295	11.5	49
370	Efficient and stable solution-processed planar perovskite solar cells via contact passivation. <i>Science</i> , 2017 , 355, 722-726	33.3	1667

(2017-2017)

369	Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths. <i>ACS Applied Materials & Distributed Materials </i>	9.5	18
368	Band-aligned C3N4NS3x/2 stabilizes CdS/CuInGaS2 photocathodes for efficient water reduction. Journal of Materials Chemistry A, 2017 , 5, 3167-3171	13	8
367	Design and characterization of 1.1 micron pixel image sensor with high near infrared quantum efficiency 2017 ,		1
366	Temperature- and ligand-dependent carrier transport dynamics in photovoltaic PbS colloidal quantum dot thin films using diffusion-wave methods. <i>Solar Energy Materials and Solar Cells</i> , 2017 , 164, 135-145	6.4	18
365	Light dilution via wavelength management for efficient high-density photobioreactors. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 1160-1169	4.9	22
364	Photovoltage field-effect transistors. <i>Nature</i> , 2017 , 542, 324-327	50.4	144
363	Device design for global shutter operation in a 1.1-th pixel image sensor and its application to near infrared sensing 2017 ,		2
362	0D-2D Quantum Dot: Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation. <i>Advanced Materials</i> , 2017 , 29, 1605646	24	73
361	Steric Hindrance Assay for Secreted Factors in Stem Cell Culture. ACS Sensors, 2017, 2, 495-500	9.2	11
360	Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6693-6699	16.4	558
359	Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11582-11585	13	42
358	Enhanced Solar-to-Hydrogen Generation with Broadband Epsilon-Near-Zero Nanostructured Photocatalysts. <i>Advanced Materials</i> , 2017 , 29, 1701165	24	29
357	Pseudohalide-Exchanged Quantum Dot Solids Achieve Record Quantum Efficiency in Infrared Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1700749	24	61
356	Freestanding nano-photoelectrode as a highly efficient and visible-light-driven photocatalyst for water-splitting. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10651-10657	13	8
355	Tailoring the Energy Landscape in Quasi-2D Halide Perovskites Enables Efficient Green-Light Emission. <i>Nano Letters</i> , 2017 , 17, 3701-3709	11.5	309
354	Graphene Oxide Shells on Plasmonic Nanostructures Lead to High-Performance Photovoltaics: A Model Study Based on Dye-Sensitized Solar Cells. <i>ACS Energy Letters</i> , 2017 , 2, 117-123	20.1	16
353	Profiling Functional and Biochemical Phenotypes of Circulating Tumor Cells Using a Two-Dimensional Sorting Device. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 163-168	16.4	69
352	Ultrafast Carrier Trapping in Thick-Shell Colloidal Quantum Dots. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3179-3184	6.4	15

351	Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. <i>Nature Communications</i> , 2017 , 8, 15640	17.4	557
350	Engineering charge transport by heterostructuring solution-processed semiconductors. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	84
349	Quantum Dot Color-Converting Solids Operating Efficiently in the kW/cm2 Regime. <i>Chemistry of Materials</i> , 2017 , 29, 5104-5112	9.6	15
348	Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption. <i>Applied Physics Letters</i> , 2017 , 110, 223903	3.4	17
347	Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 4031-4040	8.3	84
346	Field-emission from quantum-dot-in-perovskite solids. <i>Nature Communications</i> , 2017 , 8, 14757	17.4	68
345	Highly Emissive Green Perovskite Nanocrystals in a Solid State Crystalline Matrix. <i>Advanced Materials</i> , 2017 , 29, 1605945	24	252
344	Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells. <i>Nano Letters</i> , 2017 , 17, 2349-2353	11.5	39
343	Quantum Dots in Two-Dimensional Perovskite Matrices for Efficient Near-Infrared Light Emission. <i>ACS Photonics</i> , 2017 , 4, 830-836	6.3	28
342	Power-free, digital and programmable dispensing of picoliter droplets using a Digit Chip. <i>Lab on A Chip</i> , 2017 , 17, 1505-1514	7.2	6
341	High-Throughput Screening of Lead-Free Perovskite-like Materials for Optoelectronic Applications. Journal of Physical Chemistry C, 2017 , 121, 7183-7187	3.8	87
340	Continuous-wave lasing in colloidal quantum dot solids enabled by facet-selective epitaxy. <i>Nature</i> , 2017 , 544, 75-79	50.4	225
339	Origins of Stokes Shift in PbS Nanocrystals. <i>Nano Letters</i> , 2017 , 17, 7191-7195	11.5	45
338	Enhanced Open-Circuit Voltage in Colloidal Quantum Dot Photovoltaics via Reactivity-Controlled Solution-Phase Ligand Exchange. <i>Advanced Materials</i> , 2017 , 29, 1703627	24	42
337	Sulfur-Modulated Tin Sites Enable Highly Selective Electrochemical Reduction of CO2 to Formate. Joule, 2017 , 1, 794-805	27.8	263
336	Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 37536-37541	9.5	26
335	Multifunctional quantum dot DNA hydrogels. <i>Nature Communications</i> , 2017 , 8, 381	17.4	8o
334	Cellulose Nanocrystal:Polymer Hybrid Optical Diffusers for Index-Matching-Free Light Management in Optoelectronic Devices. <i>Advanced Optical Materials</i> , 2017 , 5, 1700430	8.1	33

333	Biofunctionalized conductive polymers enable efficient CO electroreduction. <i>Science Advances</i> , 2017 , 3, e1700686	14.3	61
332	Effect of disorder on transport properties in a tight-binding model for lead halide perovskites. <i>Scientific Reports</i> , 2017 , 7, 8902	4.9	18
331	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21002-21015	13	9
330	Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics. <i>Advanced Materials</i> , 2017 , 29, 1702350	24	97
329	Flexible Filter-Free Narrowband Photodetector with High Gain and Customized Responsive Spectrum. <i>Advanced Functional Materials</i> , 2017 , 27, 1702360	15.6	44
328	Chemically Addressable Perovskite Nanocrystals for Light-Emitting Applications. <i>Advanced Materials</i> , 2017 , 29, 1701153	24	106
327	Molecular Doping of the Hole-Transporting Layer for Efficient, Single-Step-Deposited Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i> , 2017 , 2, 1952-1959	20.1	39
326	Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. <i>Green Chemistry</i> , 2017 , 19, 4023-4030	10	31
325	Biexciton Resonances Reveal Exciton Localization in Stacked Perovskite Quantum Wells. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3895-3901	6.4	30
324	Colloidal quantum dot solar cell power conversion efficiency optimization using analysis of current-voltage characteristics and electrode contact imaging by lock-in carrierography. <i>Progress in Photovoltaics: Research and Applications</i> , 2017 , 25, 1034-1050	6.8	12
323	Small-Band-Offset Perovskite Shells Increase Auger Lifetime in Quantum Dot Solids. <i>ACS Nano</i> , 2017 , 11, 12378-12384	16.7	20
322	Mixed-quantum-dot solar cells. <i>Nature Communications</i> , 2017 , 8, 1325	17.4	113
321	Amplified Micromagnetic Field Gradients Enable High-Resolution Profiling of Rare Cell Subpopulations. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 25683-25690	9.5	10
320	Mobile-Ion-Induced Degradation of Organic Hole-Selective Layers in Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 14517-14523	3.8	83
319	Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals. <i>Nano Letters</i> , 2017 , 17, 475	59 -4 17 6 7	202
318	Tunable Cu Enrichment Enables Designer Syngas Electrosynthesis from CO. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9359-9363	16.4	183
317	Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry. <i>International Journal of Thermophysics</i> , 2017 , 38, 1	2.1	6
316	Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dotßolids. <i>Nature Materials</i> , 2017 , 16, 258-263	27	432

315	Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. <i>Nature Nanotechnology</i> , 2017 , 12, 274-281	28.7	149
314	Use machine learning to find energy materials. <i>Nature</i> , 2017 , 552, 23-27	50.4	63
313	Photovoltaic concepts inspired by coherence effects in photosynthetic systems. <i>Nature Materials</i> , 2016 , 16, 35-44	27	191
312	Efficient Biexciton Interaction in Perovskite Quantum Dots Under Weak and Strong Confinement. <i>ACS Nano</i> , 2016 , 10, 8603-9	16.7	142
311	Building devices from colloidal quantum dots. <i>Science</i> , 2016 , 353,	33.3	718
310	Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. <i>Advanced Materials</i> , 2016 , 28, 8718-8725	24	700
309	Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. <i>Chemical Reviews</i> , 2016 , 116, 9001-90	68.1	510
308	Mechanistic Control of the Growth of Three-Dimensional Gold Sensors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 21123-21132	3.8	33
307	Pure Cubic-Phase Hybrid Iodobismuthates AgBi2 I7 for Thin-Film Photovoltaics. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9586-90	16.4	156
306	High-Density Nanosharp Microstructures Enable Efficient CO Electroreduction. <i>Nano Letters</i> , 2016 , 16, 7224-7228	11.5	126
305	Photon management for augmented photosynthesis. <i>Nature Communications</i> , 2016 , 7, 12699	17.4	142
304	Colloidal quantum dot solids for solution-processed solar cells. <i>Nature Energy</i> , 2016 , 1,	62.3	210
303	Rational Design of Efficient Palladium Catalysts for Electroreduction of Carbon Dioxide to Formate. <i>ACS Catalysis</i> , 2016 , 6, 8115-8120	13.1	212
302	Amine-Free Synthesis of Cesium Lead Halide Perovskite Quantum Dots for Efficient Light-Emitting Diodes. <i>Advanced Functional Materials</i> , 2016 , 26, 8757-8763	15.6	265
301	Interrogating Circulating Microsomes and Exosomes Using Metal Nanoparticles. <i>Small</i> , 2016 , 12, 727-32	11	107
300	Crosslinked Remote-Doped Hole-Extracting Contacts Enhance Stability under Accelerated Lifetime Testing in Perovskite Solar Cells. <i>Advanced Materials</i> , 2016 , 28, 2807-15	24	94
299	Increasing Polymer Solar Cell Fill Factor by Trap-Filling with F4-TCNQ at Parts Per Thousand Concentration. <i>Advanced Materials</i> , 2016 , 28, 6491-6	24	66
298	Perovskite energy funnels for efficient light-emitting diodes. <i>Nature Nanotechnology</i> , 2016 , 11, 872-877	28.7	1484

(2016-2016)

297	Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. <i>Nature Materials</i> , 2016 , 15, 987-94	27	80
296	Imbalanced charge carrier mobility and Schottky junction induced anomalous current-voltage characteristics of excitonic PbS colloidal quantum dot solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2016 , 155, 155-165	6.4	31
295	ZnFe2 O4 Leaves Grown on TiO2 Trees Enhance Photoelectrochemical Water Splitting. <i>Small</i> , 2016 , 12, 3181-8	11	50
294	Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite-Shelled PbS Quantum Dot Thin Films Using Photocarrier Diffusion-Wave Nondestructive Evaluation and Imaging. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 14416-14427	3.8	22
293	10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation. <i>Nano Letters</i> , 2016 , 16, 4630-4	11.5	275
292	Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance. <i>Advanced Materials</i> , 2016 , 28, 299-304	24	279
291	Double-Sided Junctions Enable High-Performance Colloidal-Quantum-Dot Photovoltaics. <i>Advanced Materials</i> , 2016 , 28, 4142-8	24	100
290	Homogeneously dispersed multimetal oxygen-evolving catalysts. <i>Science</i> , 2016 , 352, 333-7	33.3	1459
289	Aptamer and Antisense-Mediated Two-Dimensional Isolation of Specific Cancer Cell Subpopulations. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2476-9	16.4	102
288	Highly efficient quantum dot near-infrared light-emitting diodes. <i>Nature Photonics</i> , 2016 , 10, 253-257	33.9	295
287	Ligand-Stabilized Reduced-Dimensionality Perovskites. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2649-55	16.4	889
286	Colloidal quantum dot ligand engineering for high performance solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 1130-1143	35.4	235
285	Self-assembled nanoparticle-stabilized photocatalytic reactors. <i>Nanoscale</i> , 2016 , 8, 2107-15	7.7	18
284	Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. Journal of Physical Chemistry Letters, 2016 , 7, 295-301	6.4	268
283	Renewables need a grand-challenge strategy. <i>Nature</i> , 2016 , 538, 27-29	50.4	22
282	Fast and Sensitive Solution-Processed Visible-Blind Perovskite UV Photodetectors. <i>Advanced Materials</i> , 2016 , 28, 7264-8	24	192
281	Graphdiyne: An Efficient Hole Transporter for Stable High-Performance Colloidal Quantum Dot Solar Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 5284-5289	15.6	140
280	Image-Reversal Soft Lithography: Fabrication of Ultrasensitive Biomolecular Detectors. <i>Advanced Healthcare Materials</i> , 2016 , 5, 893-9	10.1	6

279	The In-Gap Electronic State Spectrum of Methylammonium Lead Iodide Single-Crystal Perovskites. <i>Advanced Materials</i> , 2016 , 28, 3406-10	24	151
278	Design of Phosphor White Light Systems for High-Power Applications. <i>ACS Photonics</i> , 2016 , 3, 2243-224	18 6.3	33
277	Single-step colloidal quantum dot films for infrared solar harvesting. <i>Applied Physics Letters</i> , 2016 , 109, 183105	3.4	42
276	Computational Study of Magic-Size CdSe Clusters with Complementary Passivation by Carboxylic and Amine Ligands. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 10015-10019	3.8	28
275	Perovskite photonic sources. <i>Nature Photonics</i> , 2016 , 10, 295-302	33.9	1079
274	Large-Scale Synthesis of Metal Nanocrystals in Aqueous Suspensions. <i>Chemistry of Materials</i> , 2016 , 28, 3196-3202	9.6	29
273	Gradient-Doped Colloidal Quantum Dot Solids Enable Thermophotovoltaic Harvesting of Waste Heat. <i>ACS Energy Letters</i> , 2016 , 1, 740-746	20.1	7
272	Lattice dynamics and the nature of structural transitions in organolead halide perovskites. <i>Physical Review B</i> , 2016 , 94,	3.3	34
271	Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination. <i>Nano Letters</i> , 2016 , 16, 6491-6496	11.5	39
270	Optical Resonance Engineering for Infrared Colloidal Quantum Dot Photovoltaics. <i>ACS Energy Letters</i> , 2016 , 1, 852-857	20.1	19
269	Controlling C60 Organization through Dipole-Induced Band Alignment at Self-Assembled Monolayer Interfaces. <i>Chemistry of Materials</i> , 2016 , 28, 8322-8329	9.6	6
268	Remote Molecular Doping of Colloidal Quantum Dot Photovoltaics. ACS Energy Letters, 2016, 1, 922-93	020.1	34
267	Enhanced electrocatalytic CO reduction via field-induced reagent concentration. <i>Nature</i> , 2016 , 537, 382	2-38.64	997
266	DNA Clutch Probes for Circulating Tumor DNA Analysis. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11009-16	16.4	128
265	Engineering of CH3 NH3 PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 10686	- 96 ·4	121
264	Photojunction field-effect transistor based on a colloidal quantum dot absorber channel layer. <i>ACS Nano</i> , 2015 , 9, 356-62	16.7	57
263	Two-Photon Absorption in Organometallic Bromide Perovskites. ACS Nano, 2015, 9, 9340-6	16.7	208
262	Programmable definition of nanogap electronic devices using self-inhibited reagent depletion. Nature Communications, 2015, 6, 6940	17.4	17

	Colloidal Quantum Dot Solar Cells. <i>Chemical Reviews</i> , 2015 , 115, 12732-63	68.1	812
260	Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films. <i>Nature Communications</i> , 2015 , 6, 7772	17.4	57
259	Structural, optical, and electronic studies of wide-bandgap lead halide perovskites. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8839-8843	7.1	129
258	Quantum-dot-in-perovskite solids. <i>Nature</i> , 2015 , 523, 324-8	50.4	382
257	Sensitive, Fast, and Stable Perovskite Photodetectors Exploiting Interface Engineering. <i>ACS Photonics</i> , 2015 , 2, 1117-1123	6.3	247
256	Synergistic photocurrent addition in hybrid quantum dot: Bulk heterojunction solar cells. <i>Nano Energy</i> , 2015 , 13, 491-499	17.1	14
255	Conformal fabrication of colloidal quantum dot solids for optically enhanced photovoltaics. <i>ACS Nano</i> , 2015 , 9, 5447-53	16.7	25
254	Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation. <i>Advanced Materials</i> , 2015 , 27, 3325-30	24	103
253	In Situ Electrochemical ELISA for Specific Identification of Captured Cancer Cells. <i>ACS Applied Materials & Capture Cancer Cells.</i> 7, 14165-9	9.5	44
252	Rapid electrochemical phenotypic profiling of antibiotic-resistant bacteria. <i>Lab on A Chip</i> , 2015 , 15, 2799	9 7 8107	66
251	Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. <i>Nature Communications</i> , 2015 , 6, 7081	17.4	815
250	A two-step route to planar perovskite cells exhibiting reduced hysteresis. <i>Applied Physics Letters</i> , 2015 , 106, 143902	3.4	74
249	Efficient Luminescence from Perovskite Quantum Dot Solids. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 25007-13	9.5	401
249 248			401 91
	Interfaces, 2015 , 7, 25007-13		
248	Interfaces, 2015, 7, 25007-13 Microsecond-sustained lasing from colloidal quantum dot solids. Nature Communications, 2015, 6, 8694 High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano	17.4	91
248 247	Interfaces, 2015, 7, 25007-13 Microsecond-sustained lasing from colloidal quantum dot solids. Nature Communications, 2015, 6, 8694 High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers. Nano Letters, 2015, 15, 7691-6 Cleavable Ligands Enable Uniform Close Packing in Colloidal Quantum Dot Solids. ACS Applied	17.4	91

243	Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction subcells. <i>Nano Energy</i> , 2015 , 17, 196-205	17.1	34
242	All-Quantum-Dot Infrared Light-Emitting Diodes. ACS Nano, 2015, 9, 12327-33	16.7	48
241	Synergistic doping of fullerene electron transport layer and colloidal quantum dot solids enhances solar cell performance. <i>Advanced Materials</i> , 2015 , 27, 917-21	24	65
240	Efficient spray-coated colloidal quantum dot solar cells. <i>Advanced Materials</i> , 2015 , 27, 116-21	24	123
239	Perovskite thin films via atomic layer deposition. <i>Advanced Materials</i> , 2015 , 27, 53-8	24	171
238	Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 139-43	16.4	106
237	Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing. <i>Applied Physics Letters</i> , 2015 , 107, 153105	3.4	4
236	The Silicon:Colloidal Quantum Dot Heterojunction. <i>Advanced Materials</i> , 2015 , 27, 7445-50	24	40
235	Velocity valleys enable efficient capture and spatial sorting of nanoparticle-bound cancer cells. <i>Nanoscale</i> , 2015 , 7, 6278-85	7.7	29
234	Sample-to-Answer Isolation and mRNA Profiling of Circulating Tumor Cells. <i>Analytical Chemistry</i> , 2015 , 87, 6258-64	7.8	31
233	Perovskite Quantum Dots Modeled Using ab Initio and Replica Exchange Molecular Dynamics. Journal of Physical Chemistry C, 2015 , 119, 13965-13971	3.8	25
232	Colloidal CdSe(1-x)S(x) Nanoplatelets with Narrow and Continuously-Tunable Electroluminescence. <i>Nano Letters</i> , 2015 , 15, 4611-5	11.5	100
231	Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. <i>Nature Photonics</i> , 2015 , 9, 409-415	33.9	548
230	Ultrasensitive visual read-out of nucleic acids using electrocatalytic fluid displacement. <i>Nature Communications</i> , 2015 , 6, 6978	17.4	21
229	Halide-Dependent Electronic Structure of Organolead Perovskite Materials. <i>Chemistry of Materials</i> , 2015 , 27, 4405-4412	9.6	251
228	An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. <i>Nature Chemistry</i> , 2015 , 7, 569-75	17.6	198
227	Spontaneous and Light-Driven Conversion of NOx on Oxide-Modified TiO2 Surfaces. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 12750-12756	3.9	4
226	Self-Assembled PbSe Nanowire:Perovskite Hybrids. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14869-72	16.4	10

225	Planar-integrated single-crystalline perovskite photodetectors. <i>Nature Communications</i> , 2015 , 6, 8724	17.4	497
224	Fractal circuit sensors enable rapid quantification of biomarkers for donor lung assessment for transplantation. <i>Science Advances</i> , 2015 , 1, e1500417	14.3	24
223	Colloidal quantum dot solar cells exploiting hierarchical structuring. <i>Nano Letters</i> , 2015 , 15, 1101-8	11.5	127
222	Solar cells. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. <i>Science</i> , 2015 , 347, 519-22	33.3	3307
221	Atomistic description of thiostannate-capped CdSe nanocrystals: retention of four-coordinate SnS4 motif and preservation of Cd-rich stoichiometry. <i>Journal of the American Chemical Society</i> , 2015 , 137, 1862-74	16.4	40
220	Charge-extraction strategies for colloidal quantum dot photovoltaics. <i>Nature Materials</i> , 2014 , 13, 233-4	1027	252
219	High-performance quantum-dot solids via elemental sulfur synthesis. Advanced Materials, 2014, 26, 351	13 <u>-</u> 27	35
218	Atomistic model of fluorescence intermittency of colloidal quantum dots. <i>Physical Review Letters</i> , 2014 , 112, 157401	7·4	65
217	The complete in-gap electronic structure of colloidal quantum dot solids and its correlation with electronic transport and photovoltaic performance. <i>Advanced Materials</i> , 2014 , 26, 937-42	24	51
216	Inverted colloidal quantum dot solar cells. Advanced Materials, 2014, 26, 3321-7	24	57
215	Imprinted electrodes for enhanced light trapping in solution processed solar cells. <i>Advanced Materials</i> , 2014 , 26, 443-8	24	37
214	Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8, 11763-9	16.7	30
213	Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8, 10321-7	16.7	141
212	Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. <i>Advanced Materials</i> , 2014 , 26, 4717-23	24	75
211	Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 2014, 8, 10947-5.	216.7	290
210	Three-dimensional, sharp-tipped electrodes concentrate applied fields to enable direct electrical release of intact biomarkers from cells. <i>Lab on A Chip</i> , 2014 , 14, 1785-90	7.2	22
209	Materials processing routes to trap-free halide perovskites. <i>Nano Letters</i> , 2014 , 14, 6281-6	11.5	567
208	Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC. <i>IEEE Journal of Solid-State Circuits</i> , 2014 , 49, 1223-1241	5.5	41

207	Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids. <i>Advanced Materials</i> , 2014 , 26, 2718-24, 2617	24	237
206	Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. <i>Nature Communications</i> , 2014 , 5, 3803	17.4	188
205	Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. <i>Accounts of Chemical Research</i> , 2014 , 47, 2417-25	24.3	97
204	Air-stable n-type colloidal quantum dot solids. <i>Nature Materials</i> , 2014 , 13, 822-8	27	466
203	Highly Specific Electrochemical Analysis of Cancer Cells using Multi-Nanoparticle Labeling. <i>Angewandte Chemie</i> , 2014 , 126, 13361-13365	3.6	20
202	Highly specific electrochemical analysis of cancer cells using multi-nanoparticle labeling. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13145-9	16.4	89
201	Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. <i>Nature Nanotechnology</i> , 2014 , 9, 969-80	28.7	284
200	Colloidal quantum dot solar cells on curved and flexible substrates. <i>Applied Physics Letters</i> , 2014 , 105, 163902	3.4	57
199	The architecture of colloidal quantum dot solar cells: materials to devices. <i>Chemical Reviews</i> , 2014 , 114, 863-82	68.1	387
198	Folded-light-path colloidal quantum dot solar cells. <i>Scientific Reports</i> , 2013 , 3, 2166	4.9	20
197	Role of bond adaptability in the passivation of colloidal quantum dot solids. ACS Nano, 2013, 7, 7680-8	16.7	62
196	Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. <i>Advanced Materials</i> , 2013 , 25, 5742-9	24	87
195	Proximal bacterial lysis and detection in nanoliter wells using electrochemistry. ACS Nano, 2013, 7, 8183	8 -9 6.7	30
194	Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics. <i>Nature Communications</i> , 2013 , 4, 2272	17.4	49
193	25th anniversary article: Colloidal quantum dot materials and devices: a quarter-century of advances. <i>Advanced Materials</i> , 2013 , 25, 4986-5010	24	369
192	Doping control via molecularly engineered surface ligand coordination. <i>Advanced Materials</i> , 2013 , 25, 5586-92	24	55
191	Exciton Lifetime Broadening and Distribution Profiles of PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 23333-23348	3.8	27
190	Automated synthesis of photovoltaic-quality colloidal quantum dots using separate nucleation and growth stages. <i>ACS Nano</i> , 2013 , 7, 10158-66	16.7	77

189	Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. <i>Nano Letters</i> , 2013 , 13, 1502-8	11.5	89
188	Graded doping for enhanced colloidal quantum dot photovoltaics. <i>Advanced Materials</i> , 2013 , 25, 1719-2	23-4	150
187	Dynamic Trap Formation and Elimination in Colloidal Quantum Dots. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 987-92	6.4	95
186	Optimized templates for bottom-up growth of high-performance integrated biomolecular detectors. <i>Lab on A Chip</i> , 2013 , 13, 2569-75	7.2	17
185	Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. <i>Advanced Materials</i> , 2013 , 25, 1769-73	24	101
184	Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7, 5282-90	16.7	163
183	Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. <i>MRS Communications</i> , 2013 , 3, 83-90	2.7	30
182	Joint mapping of mobility and trap density in colloidal quantum dot solids. ACS Nano, 2013, 7, 5757-62	16.7	26
181	Interface Recombination in Depleted Heterojunction Photovoltaics based on Colloidal Quantum Dots. <i>Advanced Energy Materials</i> , 2013 , 3, 917-922	21.8	97
180	The donor-supply electrode enhances performance in colloidal quantum dot solar cells. <i>ACS Nano</i> , 2013 , 7, 6111-6	16.7	105
179	Solution-based circuits enable rapid and multiplexed pathogen detection. <i>Nature Communications</i> , 2013 , 4, 2001	17.4	89
178	Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples. <i>Analytical Chemistry</i> , 2013 , 85, 398-403	7.8	45
177	Broadband solar absorption enhancement via periodic nanostructuring of electrodes. <i>Scientific Reports</i> , 2013 , 3, 2928	4.9	63
176	Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier. <i>Applied Physics Letters</i> , 2013 , 103, 263905	3.4	20
175	Electric field engineering using quantum-size-effect-tuned heterojunctions. <i>Applied Physics Letters</i> , 2013 , 103, 011106	3.4	10
174	Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. <i>Applied Physics Letters</i> , 2013 , 103, 211101	3.4	18
173	Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. <i>Analytical Chemistry</i> , 2012 , 84, 21-5	7.8	59
172	Hybrid passivated colloidal quantum dot solids. <i>Nature Nanotechnology</i> , 2012 , 7, 577-82	28.7	993

171	Materials interface engineering for solution-processed photovoltaics. <i>Nature</i> , 2012 , 488, 304-12	50.4	905
170	N-type colloidal-quantum-dot solids for photovoltaics. <i>Advanced Materials</i> , 2012 , 24, 6181-5	24	165
169	All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. <i>Advanced Materials</i> , 2012 , 24, 6295-9	24	179
168	Colloidal quantum dot photovoltaics: the effect of polydispersity. <i>Nano Letters</i> , 2012 , 12, 1007-12	11.5	95
167	Quantum junction solar cells. <i>Nano Letters</i> , 2012 , 12, 4889-94	11.5	169
166	A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012 , 6, 8448-55	16.7	183
165	Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6, 89-	- 919 6.7	214
164	An ultrasensitive universal detector based on neutralizer displacement. <i>Nature Chemistry</i> , 2012 , 4, 642-	8 17.6	161
163	Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. <i>Advanced Materials</i> , 2012 , 24, 2315-9	24	112
162	Graded recombination layers for multijunction photovoltaics. <i>Nano Letters</i> , 2012 , 12, 3043-9	11.5	12
161	Systematic optimization of quantum junction colloidal quantum dot solar cells. <i>Applied Physics Letters</i> , 2012 , 101, 151112	3.4	48
160	Quantum beats due to excitonic ground-state splitting in colloidal quantum dots. <i>Physical Review B</i> , 2012 , 86,	3.3	20
159	DNA-based programming of quantum dot valency, self-assembly and luminescence. <i>Nature Nanotechnology</i> , 2011 , 6, 485-90	28.7	204
158	A donor-supply electrode (DSE) for colloidal quantum dot photovoltaics. <i>Nano Letters</i> , 2011 , 11, 5173-8	11.5	23
157	Solution-processed colloidal quantum dot photovoltaics: A perspective. <i>Energy and Environmental Science</i> , 2011 , 4, 4870	35.4	75
156	Solar cells using quantum funnels. <i>Nano Letters</i> , 2011 , 11, 3701-6	11.5	110
155	A tunable colloidal quantum dot photo field-effect transistor. <i>Applied Physics Letters</i> , 2011 , 99, 101102	3.4	16
154	Enhanced open-circuit voltage in visible quantum dot photovoltaics by engineering of carrier-collecting electrodes. <i>ACS Applied Materials & mp; Interfaces</i> , 2011 , 3, 3792-5	9.5	31

153	Colloidal quantum dot photovoltaics: a path forward. ACS Nano, 2011, 5, 8506-14	16.7	294
152	Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots. <i>Physical Review B</i> , 2011 , 83,	3.3	48
151	Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. <i>Nature Materials</i> , 2011 , 10, 765-7	127	1206
150	Tandem colloidal quantum dot solar cells employing a graded recombination layer. <i>Nature Photonics</i> , 2011 , 5, 480-484	33.9	336
149	Infrared colloidal quantum dots for photovoltaics: fundamentals and recent progress. <i>Advanced Materials</i> , 2011 , 23, 12-29	24	368
148	Depleted bulk heterojunction colloidal quantum dot photovoltaics. <i>Advanced Materials</i> , 2011 , 23, 3134-	·&4	192
147	Electron acceptor materials engineering in colloidal quantum dot solar cells. <i>Advanced Materials</i> , 2011 , 23, 3832-7	24	90
146	Direct Genetic Analysis of Ten Cancer Cells: Tuning Sensor Structure and Molecular Probe Design for Efficient mRNA Capture. <i>Angewandte Chemie</i> , 2011 , 123, 4223-4227	3.6	5
145	Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 4137-41	16.4	67
144	Colloidal quantum dot photodetectors. <i>Infrared Physics and Technology</i> , 2011 , 54, 278-282	2.7	91
143	Optimization of band structure and quantum-size-effect tuning for two-photon absorption enhancement in quantum dots. <i>Nano Letters</i> , 2011 , 11, 1227-31	11.5	62
142	Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. <i>ACS Nano</i> , 2011 , 5, 3360-6	16.7	101
141	Nanostructured materials for photon detection. <i>Nature Nanotechnology</i> , 2010 , 5, 391-400	28.7	1036
140	Connecting the quantum dots. <i>IEEE Spectrum</i> , 2010 , 47, 48-52	1.7	3
139	Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts. <i>Applied Physics Letters</i> , 2010 , 97, 023109	3.4	36
138	Solution-Processed Light Sensors and Photovoltaics. <i>IEEE Photonics Journal</i> , 2010 , 2, 265-268	1.8	2
137	Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. <i>Journal of the American Chemical Society</i> , 2010 , 132, 5952-3	16.4	120
136	Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. <i>ACS Nano</i> , 2010 , 4, 869-78	16.7	312

135	Role of symmetry breaking on the optical transitions in lead-salt quantum dots. <i>Nano Letters</i> , 2010 , 10, 3577-82	11.5	42
134	Nanostructuring of sensors determines the efficiency of biomolecular capture. <i>Analytical Chemistry</i> , 2010 , 82, 5928-31	7.8	110
133	Dead zones in colloidal quantum dot photovoltaics: evidence and implications. <i>Optics Express</i> , 2010 , 18 Suppl 3, A451-7	3.3	22
132	Depleted-heterojunction colloidal quantum dot solar cells. <i>ACS Nano</i> , 2010 , 4, 3374-80	16.7	707
131	Two-photon absorption and multi-exciton generation in lead salt quantum dots 2010,		3
130	Schottky quantum dot solar cells stable in air under solar illumination. <i>Advanced Materials</i> , 2010 , 22, 1398-402	24	152
129	Aluminum doped zinc oxide for organic photovoltaics. <i>Applied Physics Letters</i> , 2009 , 94, 213301	3.4	109
128	Integrated nanostructures for direct detection of DNA at attomolar concentrations. <i>Applied Physics Letters</i> , 2009 , 95, 143701	3.4	16
127	Solution-Processed Quantum Dot Photodetectors. <i>Proceedings of the IEEE</i> , 2009 , 97, 1666-1683	14.3	105
126	Nanostructuring of patterned microelectrodes to enhance the sensitivity of electrochemical nucleic acids detection. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8457-60	16.4	83
125	Direct, electronic microRNA detection for the rapid determination of differential expression profiles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 8461-4	16.4	127
124	A general phase-transfer protocol for metal ions and its application in nanocrystal synthesis. <i>Nature Materials</i> , 2009 , 8, 683-9	27	318
123	Fast, sensitive and spectrally tuneable colloidal-quantum-dot photodetectors. <i>Nature Nanotechnology</i> , 2009 , 4, 40-4	28.7	395
122	One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. <i>Nature Nanotechnology</i> , 2009 , 4, 121-5	28.7	184
121	Programming the detection limits of biosensors through controlled nanostructuring. <i>Nature Nanotechnology</i> , 2009 , 4, 844-8	28.7	320
120	Infrared photovoltaics made by solution processing. <i>Nature Photonics</i> , 2009 , 3, 325-331	33.9	294
119	Direct profiling of cancer biomarkers in tumor tissue using a multiplexed nanostructured microelectrode integrated circuit. <i>ACS Nano</i> , 2009 , 3, 3207-13	16.7	71
118	Heavy-metal-free solution-processed nanoparticle-based photodetectors: doping of intrinsic vacancies enables engineering of sensitivity and speed. <i>ACS Nano</i> , 2009 , 3, 331-8	16.7	68

117	Colloidal quantum-dot photodetectors exploiting multiexciton generation. <i>Science</i> , 2009 , 324, 1542-4	33.3	486
116	Si-Rich Dielectrics for Active Photonic Devices. <i>Nanostructure Science and Technology</i> , 2009 , 1-24	0.9	
115	Solution-Processed Infrared Optoelectronics: Photovoltaics, Sensors, and Sources. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 1223-1229	3.8	20
114	Schottky-quantum dot photovoltaics for efficient infrared power conversion. <i>Applied Physics Letters</i> , 2008 , 92, 151115	3.4	197
113	Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles. <i>Chemistry of Materials</i> , 2008 , 20, 6906-6910	9.6	278
112	Engineering the temporal response of photoconductive photodetectors via selective introduction of surface trap states. <i>Nano Letters</i> , 2008 , 8, 1446-50	11.5	192
111	Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. <i>ACS Nano</i> , 2008 , 2, 833-40	16.7	389
110	Biotemplated nanostructures: directed assembly of electronic and optical materials using nanoscale complementarity. <i>Journal of Materials Chemistry</i> , 2008 , 18, 954-964		68
109	Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids. <i>Applied Physics Letters</i> , 2008 , 92, 212105	3.4	183
108	Megahertz-frequency large-area optical modulators at 1.55 microm based on solution-cast colloidal quantum dots. <i>Optics Express</i> , 2008 , 16, 6683-91	3.3	14
107	Thiols passivate recombination centers in colloidal quantum dots leading to enhanced photovoltaic device efficiency. <i>ACS Nano</i> , 2008 , 2, 2356-62	16.7	191
106	Sensitive solution-processed Bi2S3 nanocrystalline photodetectors. <i>Nano Letters</i> , 2008 , 8, 4002-6	11.5	239
105	Carrier relaxation dynamics in lead sulfide colloidal quantum dots. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 2757-60	3.4	37
104	Efficient Schottky-quantum-dot photovoltaics: The roles of depletion, drift, and diffusion. <i>Applied Physics Letters</i> , 2008 , 92, 122111	3.4	143
103	Donor Acceptor C60-Containing Polyferrocenylsilanes: Synthesis, Characterization, and Applications in Photodiode Devices. <i>Advanced Functional Materials</i> , 2008 , 18, 470-477	15.6	18
102	Solution Processed Photovoltaic Devices with 2% Infrared Monochromatic Power Conversion Efficiency: Performance Optimization and Oxide Formation. <i>Advanced Materials</i> , 2008 , 20, 3433-3439	24	62
101	Smooth-Morphology Ultrasensitive Solution-Processed Photodetectors. <i>Advanced Materials</i> , 2008 , 20, 4398-4402	24	46
100	Highly luminescent lead sulfide nanocrystals in organic solvents and water through ligand exchange with poly(acrylic acid). <i>Langmuir</i> , 2008 , 24, 8215-9	4	87

99	Sensitive solution-processed visible-wavelength photodetectors. <i>Nature Photonics</i> , 2007 , 1, 531-534	33.9	342
98	Schottky barriers to colloidal quantum dot films. <i>Applied Physics Letters</i> , 2007 , 91, 253117	3.4	111
97	NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. Journal of the American Chemical Society, 2007 , 129, 7218-9	16.4	82
96	Efficient solution-processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter-quantum-dot bridging during growth from solution. <i>Applied Physics Letters</i> , 2007 , 90, 183113	3.4	115
95	PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain. <i>Applied Physics Letters</i> , 2007 , 91, 173505	3.4	143
94	Heterogeneous deposition of noble metals on semiconductor nanoparticles in organic or aqueous solvents. <i>Journal of Materials Chemistry</i> , 2006 , 16, 4025		59
93	Light-emitting silicon-rich nitride systems and photonic structures. <i>Journal of Experimental Nanoscience</i> , 2006 , 1, 29-50	1.9	11
92	Nucleotide-directed growth of semiconductor nanocrystals. <i>Journal of the American Chemical Society</i> , 2006 , 128, 64-5	16.4	80
91	Photonic crystal heterostructures and interfaces. Reviews of Modern Physics, 2006, 78, 455-481	40.5	176
90	Light emission efficiency and dynamics in silicon-rich silicon nitride films. <i>Applied Physics Letters</i> , 2006 , 88, 233109	3.4	88
89	A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength. <i>Optics Express</i> , 2006 , 14, 3273-81	3.3	103
88	Ultrasensitive solution-cast quantum dot photodetectors. <i>Nature</i> , 2006 , 442, 180-3	50.4	1442
87	Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. <i>Applied Physics Letters</i> , 2005 , 87, 233101	3.4	111
86	Measurement of the phase shift upon reflection from photonic crystals. <i>Applied Physics Letters</i> , 2005 , 86, 151112	3.4	27
85	Photoconductivity in Donor Acceptor Polyferrocenylsilane Hullerene Composite Films. <i>Chemistry of Materials</i> , 2005 , 17, 5770-5773	9.6	22
84	Behavior of light at photonic crystal interfaces. <i>Physical Review B</i> , 2005 , 71,	3.3	42
83	Efficient design and optimization of photonic crystal waveguides and couplers: The Interface Diffraction Method. <i>Optics Express</i> , 2005 , 13, 7304-18	3.3	6
82	Room-temperature amplified spontaneous emission at 1300 nm in solution-processed PbS quantum-dot films. <i>Optics Letters</i> , 2005 , 30, 171-3	3	68

(2004-2005)

81	High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films. <i>Synthetic Metals</i> , 2005 , 148, 257-261	3.6	35
80	Synthesis and optical properties of thiol-stabilized PbS nanocrystals. <i>Langmuir</i> , 2005 , 21, 1086-90	4	87
79	Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. <i>Nature Materials</i> , 2005 , 4, 138-42	27	1620
78	Efficient Infrared Electroluminescent Devices Using Solution-Processed Colloidal Quantum Dots. <i>Advanced Functional Materials</i> , 2005 , 15, 1865-1869	15.6	93
77	Infrared Quantum Dots. Advanced Materials, 2005, 17, 515-522	24	452
76	Solution-processed infrared photovoltaic devices with >10% monochromatic internal quantum efficiency. <i>Applied Physics Letters</i> , 2005 , 87, 213112	3.4	71
75	PbS quantum dot electroabsorption modulation across the extended communications band 1200¶700nm. <i>Applied Physics Letters</i> , 2005 , 87, 053101	3.4	49
74	In situ resistance measurement of the p-type contact in InPIhGaAsP coolerless ridge waveguide lasers. <i>Applied Physics Letters</i> , 2005 , 86, 081111	3.4	6
73	Colloidal Crystallization Accomplished by Electrodeposition on Patterned Substrates. <i>Journal of Dispersion Science and Technology</i> , 2005 , 26, 259-265	1.5	10
72	Electrical Scanning Probe Microscopy: Investigating the Inner Workings of Electronic and Optoelectronic Devices. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2005 , 30, 71-124	10.1	24
71	Nanoscopic electric potential probing: Influence of probellample interface on spatial resolution. <i>Applied Physics Letters</i> , 2004 , 84, 601-603	3.4	7
70	Optical limiting and intensity-dependent diffraction from low-contrast nonlinear periodic media: Coupled-mode analysis. <i>Physical Review E</i> , 2004 , 70, 036616	2.4	6
69	Impact of polydispersity on light propagation in colloidal photonic crystals. <i>Applied Physics Letters</i> , 2004 , 85, 5887-5889	3.4	36
68	Optical control over photoconductivity in polyferrocenylsilane films. <i>Journal of Chemical Physics</i> , 2004 , 120, 1990-6	3.9	12
67	Luminescence from processible quantum dot-polymer light emitters 1100¶600 nm: Tailoring spectral width and shape. <i>Applied Physics Letters</i> , 2004 , 84, 3459-3461	3.4	42
66	Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films. <i>Journal of Materials Science</i> , 2004 , 39, 993-996	4.3	24
65	Efficient excitation transfer from polymer to nanocrystals. <i>Applied Physics Letters</i> , 2004 , 84, 4295-4297	3.4	78
64	Cross-linked C60 Polymer Breaches the Quantum Gap. <i>Nano Letters</i> , 2004 , 4, 1673-1675	11.5	33

63	Photoconductivity from PbS-nanocrystallemiconducting polymer composites for solution-processible, quantum-size tunableinfrared photodetectors. <i>Applied Physics Letters</i> , 2004 , 85, 2089-2091	3.4	125
62	Optical CDMA and WDMA in the access network 2003 , 5247, 126		
61	Photooxidation and Photoconductivity of Polyferrocenylsilane Thin Films. <i>Macromolecular Chemistry and Physics</i> , 2003 , 204, 915-921	2.6	37
60	Fabrication and investigation of nanocomposites of conducting polymers and GaSb nanocrystals. <i>Surface Science</i> , 2003 , 532-535, 828-831	1.8	5
59	Influence of nanocrystals on the energy levels and luminescent properties of the polymer matrix in conjugated polymer dielectric nanocomposites. <i>Surface Science</i> , 2003 , 532-535, 1051-1055	1.8	8
58	Size-tunable infrared (1000¶600 nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer. <i>Applied Physics Letters</i> , 2003 , 82, 2895-2897	3.4	312
57	[60]Fullerene-containing polyurethane films with large ultrafast nonresonant third-order nonlinearity at telecommunication wavelengths. <i>Journal of the American Chemical Society</i> , 2003 , 125, 13648-9	16.4	68
56	Wavelength dependence and figures of merit of ultrafast third-order optical nonlinearity of a conjugated 3,3@bipyridine derivative. <i>Applied Optics</i> , 2003 , 42, 7235-41	1.7	23
55	Stable all-optical limiting in nonlinear periodic structures III Nonsolitonic pulse propagation. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2003 , 20, 695	1.7	15
54	Quantum dots in a metallopolymer host: studies of composites of polyferrocenes and CdSe nanocrystals. <i>Journal of Materials Chemistry</i> , 2003 , 13, 2213		26
53	Direct observation of lateral current spreading in ridge waveguide lasers using scanning voltage microscopy. <i>Applied Physics Letters</i> , 2003 , 82, 4166-4168	3.4	14
52	Ultrafast nonresonant third-order optical nonlinearity of a conjugated 3,3?-bipyridine derivative from 1150 to 1600 nm. <i>Applied Physics Letters</i> , 2003 , 82, 4420-4422	3.4	35
51	Exciton capture by nanocrystals in a polymer matrix. <i>Journal of Applied Physics</i> , 2003 , 94, 4066-4069	2.5	12
50	Direct measurements of large near-band edge nonlinear index change from 1.48 to 1.55 th in InGaAs/InAlGaAs multiquantum wells. <i>Applied Physics Letters</i> , 2003 , 82, 4429-4431	3.4	25
49	Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelengths. <i>Applied Physics Letters</i> , 2003 , 83, 2115-2117	3.4	46
48	Carrier transport and luminescence in composite organicIhorganic light-emitting devices. <i>Solid-State Electronics</i> , 2002 , 46, 61-68	1.7	11
47	The photonic analogue of the graded heterostructure: Analysis using the envelope approximation. <i>Optical and Quantum Electronics</i> , 2002 , 34, 217-226	2.4	3
46	Characterization of internal order of colloidal crystals by optical diffraction. <i>Optical and Quantum Electronics</i> , 2002 , 34, 27-36	2.4	18

(2001-2002)

45	Photonic pseudo-gap-based modification of photoluminescence from CdS nanocrystal satellites around polymer microspheres in a photonic crystal. <i>Applied Physics Letters</i> , 2002 , 81, 3134-3136	3.4	92	
44	Two-dimensional profiling of carriers in a buried heterostructure multi-quantum-well laser: Calibrated scanning spreading resistance microscopy and scanning capacitance microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B,		28	
43	Direct imaging of the depletion region of an InP pl junction under bias using scanning voltage microscopy. <i>Applied Physics Letters</i> , 2002 , 81, 5057-5059	3.4	25	
42	Photonic crystal heterostructures: Waveguiding phenomena and methods of solution in an envelope function picture. <i>Physical Review B</i> , 2002 , 65,	3.3	31	
41	Control over exciton confinement versus separation in composite films of polyfluorene and CdSe nanocrystals. <i>Applied Physics Letters</i> , 2002 , 81, 3446-3448	3.4	7	
40	Two-dimensional transverse cross-section nanopotentiometry of actively driven buried-heterostructure multiple-quantum-well lasers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002,		18	
39	Experimental Studies and Physical Model of Efficient, Tunable Injection Using Tunnel-Transparent Dielectric Contacts on Polymer Light-Emitting Devices. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 734, 721			
38	GaSb-based Nanocomposites as IR-Emitters. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 737, 116			
37	Stable all-optical limiting in nonlinear periodic structures I Analysis. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 43	1.7	37	
36	Stable all-optical limiting in nonlinear periodic structures II Computations. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 1873	1.7	22	
35	Analysis of non-quarter-wave grating by a modified Fourier-transform method. <i>Applied Optics</i> , 2002 , 41, 6763-7	1.7		
34	Theory of photonic crystal heterostructures. <i>Physical Review B</i> , 2002 , 66,	3.3	32	
33	Photonic crystal heterostructures lesonant tunnelling, waveguides and filters. <i>Journal of Optics</i> , 2002 , 4, S242-S246		29	
32	Luminescent properties and electronic structure of conjugated polymer-dielectric nanocrystal composites. <i>Journal of Applied Physics</i> , 2002 , 91, 6679	2.5	26	
31	Nonlinear optical figures of merit of processible composite of poly(2-methoxy,5-(2?-(ethyl)hexyloxy)-p-phenylene vinylene) and poly(methyl methacrylate). <i>Journal of Applied Physics</i> , 2002 , 91, 522	2.5	22	
30	Electronic properties of semiconducting poly(ferrocenylsilane) thin films with vapor-phase iodine diffusion doping. <i>Journal of Materials Science: Materials in Electronics</i> , 2001 , 12, 21-25	2.1	24	
29	Azobenzenes for photonic network applications: Third-order nonlinear optical properties. <i>Journal of Materials Science: Materials in Electronics</i> , 2001 , 12, 483-489	2.1	76	
28	Non-equilibrium carriers and recombination phenomena in type-II quantum dots. <i>Nanotechnology</i> , 2001 , 12, 523-528	3.4	11	

27	Time-resolved luminescence in conducting polymer/antidot nanocomposites. <i>Journal of Nanoscience and Nanotechnology</i> , 2001 , 1, 457-60	1.3	1
26	Nonlinear distributed feedback structures for optical sensor protection 2000 , 4037, 64		1
25	Photonic crystals for integrated optical computing 2000 , 4089, 786		
24	Semiconductor lasers for planar integrated optoelectronics. Solid-State Electronics, 2000, 44, 147-173	1.7	6
23	Photoelectric phenomena in polymer-based composites. <i>Journal of Applied Physics</i> , 2000 , 88, 3448-3453	3 2.5	11
22	Transmission regimes of periodic nonlinear optical structures. <i>Physical Review E</i> , 2000 , 62, R4536-9	2.4	21
21	Nonlinear distributed-feedback structures as passive optical limiters. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2000 , 17, 1360	1.7	31
20	Experimental investigation of physical mechanisms underlying lateral current injection laser operation. <i>Applied Physics Letters</i> , 1998 , 73, 285-287	3.4	10
19	Longitudinally resolved measurements of carrier concentration and gain in 980-nm InGaAs/GaAs high-power quantum well lasers 1997 ,		3
18	Longitudinal carrier density profiling in semiconductor lasers via spectral analysis of side spontaneous emission. <i>Journal of Applied Physics</i> , 1996 , 80, 1904-1906	2.5	5
17	Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solid-State Lighting. <i>Advanced Functional Materials</i> ,2111346	15.6	4
16	Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag R utu catalyst. <i>Nature Energy</i> ,	62.3	9
15	Recombination Dynamics in PbS Nanocrystal Quantum Dot Solar Cells Studied through Drift D iffusion Simulations. <i>ACS Applied Electronic Materials</i> ,	4	1
14	Defect Tolerance of Mixed B-Site OrganicIhorganic Halide Perovskites. ACS Energy Letters,4220-4227	20.1	9
13	Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation. <i>ACS Energy Letters</i> ,4405-4412	20.1	7
12	Ligand-induced symmetry breaking, size and morphology in colloidal lead sulfide QDs: from classic to thiourea precursors2, 1		6
11	The Impact of Ion Migration on the Electro-Optic Effect in Hybrid OrganicIhorganic Perovskites. <i>Advanced Functional Materials</i> ,2107939	15.6	4
10	Reagentless Biomolecular Analysis Using a Nanoscale Molecular Pendulum		2

LIST OF PUBLICATIONS

9	Synthesis, Applications, and Prospects of Quantum-Dot-in-Perovskite Solids. <i>Advanced Energy Materials</i> ,2100774	21.8	19
8	Self-Aligned Non-Centrosymmetric Conjugated Molecules Enable Electro-Optic Perovskites. <i>Advanced Optical Materials</i> ,2100730	8.1	3
7	Glycerol Oxidation Pairs with Carbon Monoxide Reduction for Low-Voltage Generation of C2 and C3 Product Streams. <i>ACS Energy Letters</i> ,3538-3544	20.1	6
6	Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n \$ perovskite/silicon tandem solar cells. <i>Energy and Environmental Science</i> ,	35.4	26
5	Dual-Phase Regulation for High-Efficiency Perovskite Light-Emitting Diodes. <i>Advanced Functional Materials</i> ,2200350	15.6	8
4	Vapor-Phase Deposition of Highly Luminescent Embedded Perovskite Nanocrystals. <i>Advanced Optical Materials</i> ,2102809	8.1	1
3	Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. <i>Nature Photonics</i> ,	33.9	35
2	Carbon-efficient carbon dioxide electrolysers. Nature Sustainability,	22.1	7
1	Nanoparticle Amplification Labeling for High-Performance Magnetic Cell Sorting. Nano Letters,	11.5	О