Hua-jun Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7370313/publications.pdf

Version: 2024-02-01

185998 182168 4,515 54 28 51 h-index citations g-index papers 55 55 55 5058 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	7.1	18
2	Eightâ€Component Nanoporous Highâ€Entropy Oxides with Low Ru Contents as Highâ€Performance Bifunctional Catalysts in Znâ€Air Batteries. Small, 2022, 18, e2107207.	5.2	40
3	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. , 2022, 4, 181-189.		50
4	Highly Strengthened and Toughened Zn–Li–Mn Alloys as Longâ€Cycling Life and Dendriteâ€Free Zn Anode for Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2200787.	5 . 2	16
5	Inhibited Surface Diffusion of High-Entropy Nano-Alloys for the Preparation of 3D Nanoporous Graphene with High Amounts of Single Atom Dopants. , 2022, 4, 978-986.		14
6	Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. Nano Letters, 2022, 22, 3392-3399.	4.5	121
7	Machine Learning Prediction of Superconducting Critical Temperature through the Structural Descriptor. Journal of Physical Chemistry C, 2022, 126, 8922-8927.	1.5	16
8	Exploiting the Synergistic Electronic Interaction between Ptâ€Skin Wrapped Intermetallic PtCo Nanoparticles and Coâ€N Support for Efficient ORR/EOR Electrocatalysis in a Direct Ethanol Fuel Cell. Small, 2022, 18, .	5.2	31
9	RuO2 electronic structure and lattice strain dual engineering for enhanced acidic oxygen evolution reaction performance. Nature Communications, 2022, 13 , .	5.8	145
10	Flexible Solidâ€State Direct Ethanol Fuel Cell Catalyzed by Nanoporous Highâ€Entropy Alâ€Pdâ€Niâ€Cuâ€Mo An and Spinel (AlMnCo) ₃ O ₄ Cathode. Advanced Functional Materials, 2021, 31, 2007129.	ode 7.8	47
11	Graphene-coated nanoporous nickel towards a metal-catalyzed oxygen evolution reaction. Nanoscale, 2021, 13, 10916-10924.	2.8	13
12	Designing Ru-doped Zn ₃ V ₃ O ₈ bifunctional OER and HER catalysts through a unified computational and experimental approach. Nanoscale, 2021, 13, 17457-17464.	2.8	4
13	Top–Down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of Materials, 2021, 33, 1771-1780.	3.2	92
14	Threeâ€dimensional Porous Co Doped VN Nanosheet Arrays as Cathode Electrode for Alkaline Water Electrolysis. ChemCatChem, 2021, 13, 2444-2450.	1.8	7
15	Development of a Ni-Doped VAl ₃ Topological Semimetal with a Significantly Enhanced HER Catalytic Performance. Journal of Physical Chemistry Letters, 2021, 12, 3740-3748.	2.1	21
16	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2103632.	7.8	19
17	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170284.	7.8	1
18	Multicomponent nanoporous Al–Ni–Cu–Pt–Pd–Co as highly stable anode catalysts in a flexible room-temperature pure ethanol–powered solid-state fuel cell. Materials Today Energy, 2021, 21, 100835.	2.5	1

#	Article	IF	Citations
19	<i>In situ</i> coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale, 2021, 13, 16164-16171.	2.8	18
20	MOF Structure Engineering to Synthesize CoNC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small, 2021, 17, e2104684.	5.2	94
21	Electronic Interaction between In Situ Formed RuO ₂ Clusters and a Nanoporous Zn ₃ V ₃ O ₈ Support and Its Use in the Oxygen Evolution Reaction. ACS Applied Materials & Date: Action and Its Use in the Oxygen Evolution Reaction.	4.0	7
22	Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118431.	10.8	96
23	MOF-Derived 2D/3D Hierarchical N-Doped Graphene as Support for Advanced Pt Utilization in Ethanol Fuel Cell. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47667-47676.	4.0	33
24	Multicomponent Spinel Metal Oxide Nanocomposites as High-Performance Bifunctional Catalysts in Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 7710-7718.	2.5	22
25	Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries. , 2020, 2, 1698-1706.		114
26	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ^air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	10.8	79
27	Synergistically coupling ultrasmall PtCu nanoalloys with highly porous CoP nanosheets as an enhanced electrocatalyst for electrochemical hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 2551-2558.	2.5	12
28	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	3.1	125
29	A robust self-stabilized electrode based on Al-based metallic glasses for a highly efficient hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 3246-3251.	5.2	46
30	Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction., 2019, 1, 526-533.		229
31	Nanoporous Alâ€Niâ€Coâ€Irâ€Mo Highâ€Entropy Alloy for Recordâ€High Water Splitting Activity in Acidic Environments. Small, 2019, 15, e1904180.	5. 2	230
32	Hierarchical Nanoporous V ₂ O ₃ Nanosheets Anchored with Alloy Nanoparticles for Efficient Electrocatalysis. ACS Applied Materials & Samp; Interfaces, 2019, 11, 38746-38753.	4.0	32
33	Metal and Nonmetal Codoped 3D Nanoporous Graphene for Efficient Bifunctional Electrocatalysis and Rechargeable Zn–Air Batteries. Advanced Materials, 2019, 31, e1900843.	11.1	236
34	Corrosion Engineering To Synthesize Ultrasmall and Monodisperse Alloy Nanoparticles Stabilized in Ultrathin Cobalt (Oxy)hydroxide for Enhanced Electrocatalysis. ACS Applied Materials & Discrete Representation (Interfaces, 2019, 11, 14745-14752.	4.0	13
35	Nanoporous high-entropy alloys for highly stable and efficient catalysts. Journal of Materials Chemistry A, 2019, 7, 6499-6506.	5. 2	215
36	Platinum Cluster/Nanoparticle on CoO Nanosheets with Coupled Atomic Structure and High Electrocatalytic Durability. ACS Applied Energy Materials, 2018, 1, 1840-1845.	2.5	17

#	Article	IF	CITATIONS
37	A general and scalable approach to produce nanoporous alloy nanowires with rugged ligaments for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 12541-12550.	5.2	23
38	Recent advance in fabricating monolithic 3D porous graphene and their applications in biosensing and biofuel cells. Biosensors and Bioelectronics, 2017, 89, 85-95.	5.3	104
39	Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode. Journal of Colloid and Interface Science, 2016, 474, 18-24.	5.0	22
40	An ultrahigh volumetric capacitance of squeezable three-dimensional bicontinuous nanoporous graphene. Nanoscale, 2016, 8, 18551-18557.	2.8	13
41	Nanoporous Graphene with Singleâ€Atom Nickel Dopants: An Efficient and Stable Catalyst for Electrochemical Hydrogen Production. Angewandte Chemie - International Edition, 2015, 54, 14031-14035.	7.2	628
42	Aligned Nanoporous Pt–Cu Bimetallic Microwires with High Catalytic Activity toward Methanol Electrooxidation. ACS Catalysis, 2015, 5, 3779-3785.	5.5	117
43	Using corrosion to fabricate various nanoporous metal structures. Corrosion Science, 2015, 92, 16-31.	3.0	89
44	Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices. Nano Research, 2015, 8, 321-339.	5.8	80
45	Core–shell-structured nanoporous PtCu with high Cu content and enhanced catalytic performance. Journal of Materials Chemistry A, 2015, 3, 7939-7944.	5.2	55
46	A novel monolithic three-dimensional graphene-based composite with enhanced electrochemical performance. Journal of Materials Chemistry A, 2015, 3, 14887-14893.	5.2	12
47	Designed synthesis of hollow Co ₃ O ₄ nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry A, 2015, 3, 8825-8831.	5.2	54
48	Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale, 2015, 7, 386-400.	2.8	78
49	Highâ€Quality Threeâ€Dimensional Nanoporous Graphene. Angewandte Chemie - International Edition, 2014, 53, 4822-4826.	7.2	215
50	Bicontinuous Nanoporous Nâ€doped Graphene for the Oxygen Reduction Reaction. Advanced Materials, 2014, 26, 4145-4150.	11.1	261
51	Nanoporous metal as a platform for electrochemical and optical sensing. Journal of Materials Chemistry C, 2014, 2, 9788-9799.	2.7	55
52	Selfâ€Grown Oxyâ€Hydroxide@ Nanoporous Metal Electrode for Highâ€Performance Supercapacitors. Advanced Materials, 2014, 26, 269-272.	11.1	152
53	Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. Scripta Materialia, 2014, 89, 69-72.	2.6	62
54	Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. Journal of Power Sources, 2014, 247, 896-905.	4.0	140