List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7370295/publications.pdf Version: 2024-02-01

FTIENNE CDALL

#	Article	IF	CITATIONS
1	Hybrid Nonisocyanate Polyurethanes (Hâ€NIPUs): A Pathway towards a Broad Range of Novel Materials. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	17
2	Synthesis and Characterization of Vanillin-Based π-Conjugated Polyazomethines and Their Oligomer Model Compounds. Molecules, 2022, 27, 4138.	1.7	2
3	Enantioselective Crystallization of Diglycerol Dicarbonate: Impact of the Microstructure on Polyhydroxyurethane Properties. Macromolecular Rapid Communications, 2021, 42, 2000533.	2.0	4
4	Crosslinked isocyanate-free poly(hydroxy urethane)s – Poly(butyl methacrylate) hybrid latexes. European Polymer Journal, 2021, 146, 110254.	2.6	14
5	Direct electrospinning of cellulose in the DBU-CO2 switchable solvent system. Cellulose, 2021, 28, 6869-6880.	2.4	5
6	Polycaryophyllene as a Promising Plasticizer for Ethylene Propylene Diene Monomer Elastomers. ACS Applied Polymer Materials, 2021, 3, 3953-3959.	2.0	2
7	Ester-Containing Imidazolium-Type Ionic Liquid Crystals Derived from Bio-based Fatty Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 12687-12698.	3.2	3
8	Bio-Based Polyricinoleate and Polyhydroxystearate: Properties and Evaluation as Viscosity Modifiers for Lubricants. ACS Applied Polymer Materials, 2021, 3, 811-818.	2.0	2
9	Bio-Based Thermo-Reversible Aliphatic Polycarbonate Network. Molecules, 2020, 25, 74.	1.7	8
10	Volatile Organic Compound-Free Synthesis of Waterborne Poly(hydroxy urethane)–(Meth)acrylic Hybrids by Miniemulsion Polymerization. ACS Applied Polymer Materials, 2020, 2, 4016-4025.	2.0	17
11	Water-based non-isocyanate polyurethane-ureas (NIPUUs). Polymer Chemistry, 2020, 11, 3786-3799.	1.9	30
12	Hydrolyzable Biobased Polyhydroxyurethane Networks with Shape Memory Behavior at Body Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 9125-9135.	3.2	27
13	Chemo-enzymatic synthesis of glycolipids, their polymerization and self-assembly. Polymer Chemistry, 2020, 11, 3994-4004.	1.9	3
14	Upgrading the chemistry of π-conjugated polymers toward more sustainable materials. Journal of Materials Chemistry C, 2020, 8, 9792-9810.	2.7	36
15	Divanillin-Based Polyazomethines: Toward Biobased and Metal-Free π-Conjugated Polymers. ACS Omega, 2020, 5, 5176-5181.	1.6	22
16	Caryophyllene as a Precursor of Cross-Linked Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 4451-4456.	3.2	7
17	Impact of Fatty Acid Structure on CALB atalyzed Esterification of Glucose. European Journal of Lipid Science and Technology, 2020, 122, 1900294.	1.0	22
18	Crossâ€Linking of Polyesters Based on Fatty Acids. European Journal of Lipid Science and Technology, 2019, 121, 1900264.	1.0	10

#	Article	IF	CITATIONS
19	Benefit of the Reactive Extrusion in the Course of Polyhydroxyurethanes Synthesis by Aminolysis of Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2019, 7, 17282-17292.	3.2	41
20	Divanillin-Based Aromatic Amines: Synthesis and Use as Curing Agents for Fully Vanillin-Based Epoxy Thermosets. Frontiers in Chemistry, 2019, 7, 606.	1.8	28
21	Versatile cross-linked fatty acid-based polycarbonate networks obtained by thiol–ene coupling reaction. RSC Advances, 2019, 9, 145-150.	1.7	14
22	Organogels from trehalose difatty ester amphiphiles. Soft Matter, 2019, 15, 956-962.	1.2	4
23	Cationic water dispersion of bio-sourced cross-linked polyurethane. Green Materials, 2019, 7, 185-193.	1.1	0
24	Critical Review on Sustainable Homogeneous Cellulose Modification: Why Renewability Is Not Enough. ACS Sustainable Chemistry and Engineering, 2019, 7, 1826-1840.	3.2	121
25	Sustainable Approach for Cellulose Aerogel Preparation from the DBU–CO ₂ Switchable Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 3329-3338.	3.2	38
26	Synthesis and Self-Assembly of Xylan-Based Amphiphiles: From Bio-Based Vesicles to Antifungal Properties. Biomacromolecules, 2019, 20, 118-129.	2.6	15
27	Simple and Efficient Approach toward Photosensitive Biobased Aliphatic Polycarbonate Materials. ACS Macro Letters, 2018, 7, 250-254.	2.3	26
28	Detailed Understanding of the DBU/CO ₂ Switchable Solvent System for Cellulose Solubilization and Derivatization. ACS Sustainable Chemistry and Engineering, 2018, 6, 1496-1503.	3.2	54
29	On the CO 2 sorption and swelling of elastomers by supercritical CO 2 as studied by in situ high pressure FTIR microscopy. Journal of Supercritical Fluids, 2018, 131, 150-156.	1.6	19
30	Sustainable succinylation of cellulose in a CO ₂ -based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green Chemistry, 2018, 20, 214-224.	4.6	62
31	Divinylglycol, a Glycerol-Based Monomer: Valorization, Properties, and Applications. ACS Symposium Series, 2018, , 299-330.	0.5	2
32	Synthesis and characterization of partially bio-based polyimides based on biphenylene-containing diisocyanate derived from vanillic acid. European Polymer Journal, 2018, 109, 257-264.	2.6	20
33	6-O-glucose palmitate synthesis with lipase: Investigation of some key parameters. Molecular Catalysis, 2018, 460, 63-68.	1.0	23
34	On the direct use of CO ₂ in multicomponent reactions: introducing the Passerini four component reaction. RSC Advances, 2018, 8, 31490-31495.	1.7	7
35	Sustainable Transesterification of Cellulose with High Oleic Sunflower Oil in a DBU-CO ₂ Switchable Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 8826-8835.	3.2	59
36	Divanillin-Based Epoxy Precursors as DGEBA Substitutes for Biobased Epoxy Thermosets. ACS Sustainable Chemistry and Engineering, 2018, 6, 11008-11017.	3.2	110

#	Article	IF	CITATIONS
37	Visible-light photocatalyzed oxidative decarboxylation of oxamic acids: a green route to urethanes and ureas. Chemical Communications, 2018, 54, 9337-9340.	2.2	39
38	Unexpected Synthesis of Segmented Poly(hydroxyurea–urethane)s from Dicyclic Carbonates and Diamines by Organocatalysis. Macromolecules, 2018, 51, 5556-5566.	2.2	69
39	A thioglycerol route to bio-based bis-cyclic carbonates: poly(hydroxyurethane) preparation and post-functionalization. Polymer Chemistry, 2017, 8, 3438-3447.	1.9	23
40	ADMET polymerization of α,ω-unsaturated glycolipids: synthesis and physico-chemical properties of the resulting polymers. Polymer Chemistry, 2017, 8, 3731-3739.	1.9	19
41	Synthesis and Characterization of Epoxy Thermosetting Polymers from Glycidylated Organosolv Lignin and Bisphenol A. Macromolecular Chemistry and Physics, 2017, 218, 1600411.	1.1	37
42	Hyperbranched polyesters by polycondensation of fatty acid-based AB _n -type monomers. Green Chemistry, 2017, 19, 259-269.	4.6	38
43	Synthesis of fatty acid-based non-isocyanate polyurethanes, NIPUs, in bulk and mini-emulsion. European Polymer Journal, 2016, 84, 863-872.	2.6	56
44	Vegetable oils: a source of polyols for polyurethane materials. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D508.	0.6	53
45	Isomerization-hydroboration-oxidation strategy: Access to long chain AB- and AA-type oleyl based monomers and polymers thereof. European Journal of Lipid Science and Technology, 2016, 118, 1620-1629.	1.0	3
46	From Ligninâ€derived Aromatic Compounds to Novel Biobased Polymers. Macromolecular Rapid Communications, 2016, 37, 9-28.	2.0	296
47	Bio-based aliphatic primary amines from alcohols through the â€~Nitrile route' towards non-isocyanate polyurethanes. European Polymer Journal, 2016, 82, 114-121.	2.6	13
48	Activated lipidic cyclic carbonates for non-isocyanate polyurethane synthesis. Polymer Chemistry, 2016, 7, 1439-1451.	1.9	96
49	Selective laccase-catalyzed dimerization of phenolic compounds derived from lignin: Towards original symmetrical bio-based (bis) aromatic monomers. Journal of Molecular Catalysis B: Enzymatic, 2016, 125, 34-41.	1.8	64
50	Salphen-Co(III) complexes catalyzed copolymerization of epoxides with CO2. Polymer, 2015, 63, 52-61.	1.8	23
51	Synthesis of Fatty Acid-Based Polyesters and Their Blends with Poly(<scp>l</scp> -lactide) as a Way To Tailor PLLA Toughness. ACS Sustainable Chemistry and Engineering, 2015, 3, 283-292.	3.2	58
52	Renewable (semi)aromatic polyesters from symmetrical vanillin-based dimers. Polymer Chemistry, 2015, 6, 6058-6066.	1.9	129
53	Fatty acid-based thermoplastic poly(ester-amide) as toughening and crystallization improver of poly(l-lactide). European Polymer Journal, 2015, 65, 276-285.	2.6	31
54	lsocyanate-Free Routes to Polyurethanes and Poly(hydroxy Urethane)s. Chemical Reviews, 2015, 115, 12407-12439.	23.0	504

#	Article	IF	CITATIONS
55	ADMET polymerization of bio-based biphenyl compounds. Polymer Chemistry, 2015, 6, 7693-7700.	1.9	51
56	Dimerization of abietic acid for the design of renewable polymers by ADMET. European Polymer Journal, 2015, 67, 409-417.	2.6	27
57	Hydrophobe-free miniemulsion polymerization: towards high solid content of fatty acid-based poly(urethane-urea) latexes. Polymer Chemistry, 2015, 6, 213-217.	1.9	7
58	Bioâ€Based Aliphatic Polyurethanes Through ADMET Polymerization in Bulk and Green Solvent. Macromolecular Rapid Communications, 2014, 35, 479-483.	2.0	52
59	Branched polyethylene mimicry by metathesis copolymerization of fatty acid-based α,ω-dienes. Green Chemistry, 2014, 16, 1755-1758.	4.6	38
60	Unexpected dimerization of isoprene in a gas chromatography inlet. A study by gas chromatography/mass spectrometry coupling. Journal of Chromatography A, 2014, 1331, 133-138.	1.8	7
61	Fatty acid-based (bis) 6-membered cyclic carbonates as efficient isocyanate free poly(hydroxyurethane) precursors. Polymer Chemistry, 2014, 5, 6142-6147.	1.9	84
62	Selective isomerization–carbonylation of a terpene trisubstituted double bond. Green Chemistry, 2014, 16, 4541-4545.	4.6	22
63	Novel green fatty acid-based bis-cyclic carbonates for the synthesis of isocyanate-free poly(hydroxyurethane amide)s. RSC Advances, 2014, 4, 25795-25803.	1.7	94
64	Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polymer Chemistry, 2013, 4, 5472.	1.9	183
65	Polyterpenes by ring opening metathesis polymerization of caryophyllene and humulene. Green Chemistry, 2013, 15, 1112.	4.6	44
66	Tetrahydrofuran in TiCl ₄ /THF/MgCl ₂ : a Non-Innocent Ligand for Supported Ziegler–Natta Polymerization Catalysts. ACS Catalysis, 2013, 3, 52-56.	5.5	58
67	Homo- and Copolymerizations of (Meth)Acrylates with Olefins (Styrene, Ethylene) Using Neutral Nickel Complexes: A Dual Radical/Catalytic Pathway. Macromolecules, 2011, 44, 3293-3301.	2.2	52
68	Unusual activation by solvent of the ethylene free radical polymerization. Polymer Chemistry, 2011, 2, 2328.	1.9	31
69	Aqueous Dispersions of Nonspherical Polyethylene Nanoparticles from Freeâ€Radical Polymerization under Mild Conditions. Angewandte Chemie - International Edition, 2010, 49, 6810-6812.	7.2	18
70	Characterization of Ethylene methyl methacrylate and Ethylene butylacrylate Copolymers with Interactive Liquid Chromatography. Macromolecular Symposia, 2010, 298, 191-199.	0.4	9
71	Supercritical behavior in free radical polymerization of ethylene in the medium pressure range. Physical Chemistry Chemical Physics, 2010, 12, 11665.	1.3	17
72	Free Ethylene Radical Polymerization under Mild Conditions: The Impact of the Solvent. Macromolecules, 2009, 42, 7279-7281.	2.2	29