List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7370037/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How wastewater informs COVID-19 policy in Switzerland. , 2022, 3, .		0
2	Removal of Waterborne Viruses by <i>Tetrahymena pyriformis</i> Is Virus-Specific and Coincides with Changes in Protist Swimming Speed. Environmental Science & Technology, 2022, 56, 4062-4070.	4.6	16
3	Inferring transmission fitness advantage of SARS-CoV-2 variants of concern from wastewater samples using digital PCR, Switzerland, December 2020 through March 2021. Eurosurveillance, 2022, 27, .	3.9	12
4	Fate of Parasites and Viruses in Calcium Hydroxide-Treated Urine in Relation to Temperature and Moisture Content. Frontiers in Environmental Science, 2022, 10, .	1.5	1
5	Bacterial matrix metalloproteases and serine proteases contribute to the extra-host inactivation of enteroviruses in lake water. ISME Journal, 2022, 16, 1970-1979.	4.4	7
6	Wastewater Reveals the Spatiotemporal Spread of SARS-CoV-2 in the Canton of Ticino (Switzerland) during the Onset of the COVID-19 Pandemic. ACS ES&T Water, 2022, 2, 2194-2200.	2.3	10
7	Wastewater-Based Estimation of the Effective Reproductive Number of SARS-CoV-2. Environmental Health Perspectives, 2022, 130, .	2.8	92
8	Genotype-dependent kinetics of enterovirus inactivation by free chlorine and ultraviolet (UV) irradiation. Water Research, 2022, 220, 118712.	5.3	13
9	Integrating Environmental Dimensions of "One Health―to Combat Antimicrobial Resistance: Essential Research Needs. Environmental Science & Technology, 2022, 56, 14871-14874.	4.6	16
10	Early detection and surveillance of SARS-CoV-2 genomic variants in wastewater using COJAC. Nature Microbiology, 2022, 7, 1151-1160.	5.9	69
11	Wastewater monitoring outperforms case numbers as a tool to track COVID-19 incidence dynamics when test positivity rates are high. Water Research, 2021, 200, 117252.	5.3	100
12	An integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method to simultaneously quantify the infectious concentrations of eight environmentally relevant enterovirus serotypes. Journal of Virological Methods, 2021, 296, 114225.	1.0	6
13	Relationship Between Inactivation and Genome Damage of Human Enteroviruses Upon Treatment by UV254, Free Chlorine, and Ozone. Food and Environmental Virology, 2020, 12, 20-27.	1.5	26
14	Control of Waterborne Human Viruses by Indigenous Bacteria and Protists Is Influenced by Temperature, Virus Type, and Microbial Species. Applied and Environmental Microbiology, 2020, 86, .	1.4	22
15	Retention of E. coli and water on the skin after liquid contact. PLoS ONE, 2020, 15, e0238998.	1.1	5
16	Viral Transfer and Inactivation through Zooplankton Trophic Interactions. Environmental Science & Technology, 2020, 54, 9418-9426.	4.6	6
17	Removal of trace organic contaminants from wastewater by superfine powdered activated carbon (SPAC) is neither affected by SPAC dispersal nor coagulation. Water Research, 2020, 185, 116302.	5.3	11
18	Adaptation of Human Enterovirus to Warm Environments Leads to Resistance against Chlorine Disinfection. Environmental Science & Technology, 2020, 54, 11292-11300.	4.6	18

#	Article	IF	CITATIONS
19	Global Sensitivity Analysis of Environmental, Water Quality, Photoreactivity, and Engineering Design Parameters in Sunlight Inactivation of Viruses. Environmental Science & Technology, 2020, 54, 8401-8410.	4.6	10
20	The Metal Catalyst Influences the Kinetics and Mechanisms of MS2 Inactivation in Fenton-like Systems. Chimia, 2020, 74, 149.	0.3	3
21	UV Disinfection of Human Norovirus: Evaluating Infectivity Using a Genome-Wide PCR-Based Approach. Environmental Science & Technology, 2020, 54, 2851-2858.	4.6	44
22	Salt Enhances the Thermostability of Enteroviruses by Stabilizing Capsid Protein Interfaces. Journal of Virology, 2020, 94, .	1.5	15
23	Proxies to monitor the inactivation of viruses by ozone in surface water and wastewater effluent. Water Research, 2019, 166, 115088.	5.3	26
24	The utility of flow cytometry for potable reuse. Current Opinion in Biotechnology, 2019, 57, 42-49.	3.3	9
25	Health Risks for Sanitation Service Workers along a Container-Based Urine Collection System and Resource Recovery Value Chain. Environmental Science & Technology, 2019, 53, 7055-7067.	4.6	29
26	Differences in Viral Disinfection Mechanisms as Revealed by Quantitative Transfection of Echovirus 11 Genomes. Applied and Environmental Microbiology, 2019, 85, .	1.4	39
27	Variability in Disinfection Resistance between Currently Circulating <i>Enterovirus B</i> Serotypes and Strains. Environmental Science & amp; Technology, 2018, 52, 3696-3705.	4.6	51
28	Kinetics of Inactivation of Waterborne Enteric Viruses by Ozone. Environmental Science & Technology, 2018, 52, 2170-2177.	4.6	84
29	Transfer of Enteric Viruses Adenovirus and Coxsackievirus and Bacteriophage MS2 from Liquid to Human Skin. Applied and Environmental Microbiology, 2018, 84, .	1.4	16
30	Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Sciences: Processes and Impacts, 2018, 20, 1089-1122.	1.7	180
31	Identification of the inactivating factors and mechanisms exerted on MS2 coliphage in concentrated synthetic urine. Science of the Total Environment, 2017, 598, 213-219.	3.9	5
32	Virus inactivation in stored human urine, sludge and animal manure under typical conditions of storage or mesophilic anaerobic digestion. Environmental Science: Water Research and Technology, 2017, 3, 492-501.	1.2	21
33	Resistance of Echovirus 11 to ClO ₂ Is Associated with Enhanced Host Receptor Use, Altered Entry Routes, and High Fitness. Environmental Science & Technology, 2017, 51, 10746-10755.	4.6	29
34	Virus Transfer at the Skin–Liquid Interface. Environmental Science & Technology, 2017, 51, 14417-14425.	4.6	42
35	Cross-Resistance of UV- or Chlorine Dioxide-Resistant Echovirus 11 to Other Disinfectants. Frontiers in Microbiology, 2017, 8, 1928.	1.5	29
36	Experimental adaptation of human echovirus 11 to ultraviolet radiation leads to resistance to disinfection and ribavirin. Virus Evolution, 2017, 3, vex035.	2.2	33

#	Article	IF	CITATIONS
37	Genetic, Structural, and Phenotypic Properties of MS2 Coliphage with Resistance to ClO ₂ Disinfection. Environmental Science & Technology, 2016, 50, 13520-13528.	4.6	34
38	Bacteria Inactivation during the Drying of Struvite Fertilizers Produced from Stored Urine. Environmental Science & Technology, 2016, 50, 13013-13023.	4.6	27
39	Ammonia as an <i>In Situ</i> Sanitizer: Influence of Virus Genome Type on Inactivation. Applied and Environmental Microbiology, 2016, 82, 4909-4920.	1.4	31
40	Viruses at Solid–Water Interfaces: A Systematic Assessment of Interactions Driving Adsorption. Environmental Science & Technology, 2016, 50, 732-743.	4.6	199
41	Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces. Environmental Science & Technology, 2016, 50, 3597-3606.	4.6	29
42	Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent. Water Research, 2016, 90, 90-99.	5.3	126
43	A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters. Water Research, 2016, 88, 912-922.	5.3	45
44	Solar Disinfection of Viruses in Polyethylene Terephthalate Bottles. Applied and Environmental Microbiology, 2016, 82, 279-288.	1.4	38
45	Inactivation kinetics and mechanisms of viral and bacterial pathogen surrogates during urine nitrification. Environmental Science: Water Research and Technology, 2015, 1, 65-76.	1.2	13
46	Ammonia as an In Situ Sanitizer: Inactivation Kinetics and Mechanisms of the ssRNA Virus MS2 by NH ₃ . Environmental Science & Technology, 2015, 49, 1060-1067.	4.6	39
47	Conceptual Model and Experimental Framework to Determine the Contributions of Direct and Indirect Photoreactions to the Solar Disinfection of MS2, phiX174, and Adenovirus. Environmental Science & amp; Technology, 2015, 49, 334-342.	4.6	70
48	Technologies for the treatment of source-separated urine in the eThekwini Municipality. Water S A, 2015, 41, 212.	0.2	65
49	Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa. Water Research, 2015, 85, 57-65.	5.3	81
50	UVC Inactivation of dsDNA and ssRNA Viruses in Water: UV Fluences and a qPCR-Based Approach to Evaluate Decay on Viral Infectivity. Food and Environmental Virology, 2014, 6, 260-268.	1.5	44
51	Direct effects of dominant winds on residence and travel times in the wide and open lacustrine embayment: Vidy Bay (Lake Geneva, Switzerland). Aquatic Sciences, 2014, 76, 59-71.	0.6	28
52	Spatial extent and ecotoxicological risk assessment of a micropollutant-contaminated wastewater plume in Lake Geneva. Aquatic Sciences, 2014, 76, 7-19.	0.6	15
53	On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide. Water Research, 2014, 48, 82-89.	5.3	39
54	Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for Abiotic Back-Transformation. Environmental Science & Technology, 2013, 47, 6746-6755.	4.6	189

#	Article	IF	CITATIONS
55	Virus removal and inactivation by iron (hydr)oxide-mediated Fenton-like processes under sunlight and in the dark. Photochemical and Photobiological Sciences, 2013, 12, 1596-1605.	1.6	44
56	Micropollutant Dynamics in Vidy Bay—A Coupled Hydrodynamic-Photolysis Model to Assess the Spatial Extent of Ecotoxicological Risk. Environmental Science & Technology, 2013, 47, 9207-9216.	4.6	26
57	Mechanisms of Human Adenovirus Inactivation by Sunlight and UVC Light as Examined by Quantitative PCR and Quantitative Proteomics. Applied and Environmental Microbiology, 2013, 79, 1325-1332.	1.4	59
58	Subtle Differences in Virus Composition Affect Disinfection Kinetics and Mechanisms. Applied and Environmental Microbiology, 2013, 79, 3455-3467.	1.4	76
59	Inactivation of Bacteriophage MS2 with Potassium Ferrate(VI). Environmental Science & Technology, 2012, 46, 12079-12087.	4.6	94
60	Virus disinfection mechanisms: the role of virus composition, structure, and function. Current Opinion in Virology, 2012, 2, 84-89.	2.6	148
61	Emerging Investigators themed issue 2012. Journal of Environmental Monitoring, 2012, 14, 1743.	2.1	0
62	Inactivation and Tailing during UV ₂₅₄ Disinfection of Viruses: Contributions of Viral Aggregation, Light Shielding within Viral Aggregates, and Recombination. Environmental Science & Technology, 2012, 46, 10022-10030.	4.6	61
63	Photoinactivation of virus on iron-oxide coated sand: Enhancing inactivation in sunlit waters. Water Research, 2012, 46, 1763-1770.	5.3	43
64	Virus Inactivation Mechanisms: Impact of Disinfectants on Virus Function and Structural Integrity. Environmental Science & Technology, 2012, 46, 12069-12078.	4.6	311
65	UV Radiation Induces Genomeâ€Mediated, Siteâ€Specific Cleavage in Viral Proteins. ChemBioChem, 2012, 13, 837-845.	1.3	37
66	Framework for Using Quantitative PCR as a Nonculture Based Method To Estimate Virus Infectivity. Environmental Science & Technology, 2011, 45, 2257-2263.	4.6	82
67	Role of Temperature and Suwannee River Natural Organic Matter on Inactivation Kinetics of Rotavirus and Bacteriophage MS2 by Solar Irradiation. Environmental Science & Technology, 2011, 45, 10385-10393.	4.6	89
68	Impact of Virus Aggregation on Inactivation by Peracetic Acid and Implications for Other Disinfectants. Environmental Science & amp; Technology, 2011, 45, 7710-7717.	4.6	77
69	Spatial and Temporal Presence of a Wastewater-Derived Micropollutant Plume in Lake Geneva. Environmental Science & Technology, 2011, 45, 4702-4709.	4.6	72
70	Fate of the pathogen indicators phage ΦX174 and Ascaris suum eggs during the production of struvite fertilizer from source-separated urine. Water Research, 2011, 45, 4960-4972.	5.3	66
71	Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part I: Priority list for environmental risk assessment of pharmaceuticals. Environmental Toxicology and Chemistry, 2010, 29, 1649-1657.	2.2	61
72	Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: Micropollutant removal between wastewater and raw drinking water. Environmental Toxicology and Chemistry, 2010, 29, 1658-1668.	2.2	120

#	Article	IF	CITATIONS
73	Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight. Environmental Science & Technology, 2010, 44, 3351-3356.	4.6	157
74	Reactivity of Alkyl Polyhalides toward Granular Iron: Development of QSARs and Reactivity Cross Correlations for Reductive Dehalogenation. Environmental Science & Technology, 2010, 44, 7928-7936.	4.6	21
75	Pharmaceuticals and personal care products in effluent matrices: A survey of transformation and removal during wastewater treatment and implications for wastewater management. Journal of Environmental Monitoring, 2010, 12, 1956.	2.1	286
76	Oxidation of Virus Proteins during UV254 and Singlet Oxygen Mediated Inactivation. Environmental Science & Technology, 2010, 44, 5437-5443.	4.6	84
77	Quantitative PCR for Determining the Infectivity of Bacteriophage MS2 upon Inactivation by Heat, UV-B Radiation, and Singlet Oxygen: Advantages and Limitations of an Enzymatic Treatment To Reduce False-Positive Results. Applied and Environmental Microbiology, 2009, 75, 5544-5554.	1.4	155
78	Association with Natural Organic Matter Enhances the Sunlight-Mediated Inactivation of MS2 Coliphage by Singlet Oxygen. Environmental Science & Technology, 2007, 41, 4626-4632.	4.6	95
79	Sunlight-Mediated Inactivation of MS2 Coliphage via Exogenous Singlet Oxygen Produced by Sensitizers in Natural Waters. Environmental Science & Technology, 2007, 41, 192-197.	4.6	202
80	Interspecies Competitive Effects in Reduction of Organohalides in Connelly Iron Columns. Environmental Engineering Science, 2006, 23, 874-885.	0.8	6
81	Reactivity of Substituted Benzotrichlorides toward Granular Iron, Cr(II), and an Iron(II) Porphyrin:  A Correlation Analysis. Environmental Science & Technology, 2006, 40, 4253-4260.	4.6	11
82	The effect of silica on the degradation of organohalides in granular iron columns. Journal of Contaminant Hydrology, 2006, 83, 70-88.	1.6	27
83	Longevity of Granular Iron in Groundwater Treatment Processes:Â Corrosion Product Development. Environmental Science & Technology, 2005, 39, 2867-2879.	4.6	140
84	Photosensitizer Method to Determine Rate Constants for the Reaction of Carbonate Radical with Organic Compounds. Environmental Science & Technology, 2005, 39, 9182-9188.	4.6	407
85	Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces. Analytica Chimica Acta, 2003, 496, 301-313.	2.6	23
86	Investigation of the Inhibitory Effect of Silica on the Degradation of 1,1,1-Trichloroethane by Granular Iron. Environmental Science & amp; Technology, 2003, 37, 5806-5812.	4.6	35
87	Longevity of Granular Iron in Groundwater Treatment Processes:Â Solution Composition Effects on Reduction of Organohalides and Nitroaromatic Compounds. Environmental Science & Technology, 2003, 37, 1208-1218	4.6	196