Justin K Mobley

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7369560/justin-k-mobley-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

516 21 13 21 h-index g-index citations papers 682 6.9 3.84 21 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
21	Controlling bacterial contamination during fuel ethanol fermentation using thermochemically depolymerized lignin bio-oils. <i>Green Chemistry</i> , 2021 , 23, 6477-6489	10	O
20	Dual function organic active materials for nonaqueous redox flow batteries. <i>Materials Advances</i> , 2021 , 2, 1390-1401	3.3	12
19	The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. <i>Science Advances</i> , 2020 , 6, eaaz0478	14.3	28
18	Conversion of Lignin to Value-added Chemicals via Oxidative Depolymerization 2020, 357-393		1
17	Bromide-Based Ionic Liquid Treatment of Hardwood Organosolv Lignin Yielded a More Reactive Biobased Polyol. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 18740-18747	3.9	4
16	Antimicrobial Properties of Corn Stover Lignin Fractions Derived from Catalytic Transfer Hydrogenolysis in Supercritical Ethanol with a Ru/C Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 18455-18467	8.3	3
15	Understanding Laccaselbnic Liquid Interactions toward Biocatalytic Lignin Conversion in Aqueous Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15928-15938	8.3	30
14	Mechanistic Exploration of Dodecanethiol-Treated Colloidal CsPbBr3 Nanocrystals with Photoluminescence Quantum Yields Reaching Near 100%. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 18103-18112	3.8	22
13	A comparative study of secondary depolymerization methods on oxidized lignins. <i>Green Chemistry</i> , 2019 , 21, 3940-3947	10	23
12	Characteristics of Hot Water Extracts from the Bark of Cultivated Willow (Salix sp.). <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5566-5573	8.3	23
11	Selective Oxidation of Lignin Model Compounds. <i>ChemSusChem</i> , 2018 , 11, 2045-2050	8.3	26
10	Mechanochemical Treatment Facilitates Two-Step Oxidative Depolymerization of Kraft Lignin. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5990-5998	8.3	38
9	Oxidation of Benzylic Alcohols and Lignin Model Compounds with Layered Double Hydroxide Catalysts. <i>Inorganics</i> , 2018 , 6, 75	2.9	4
8	An "ideal lignin" facilitates full biomass utilization. <i>Science Advances</i> , 2018 , 4, eaau2968	14.3	108
7	Dramatic Simplification of Lignin Heteronuclear Single Quantum Coherence Spectra from Ring-and-Puck Milling Followed by Oxidation. <i>Energy & Energy & Energy</i>	4.1	4
6	Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 2018, 9, 8127	7-89.43	44
5	Highly Decorated Lignins in Leaf Tissues of the Canary Island Date Palm. <i>Plant Physiology</i> , 2017 , 175, 1058-1067	6.6	27

LIST OF PUBLICATIONS

4	Extraction, characterization, purification and catalytic upgrading of algae lipids to fuel-like hydrocarbons. <i>Fuel</i> , 2016 , 180, 668-678	7.1	33
3	Oxidation of lignin and lignin EO-4 model compounds via activated dimethyl sulfoxide. <i>RSC Advances</i> , 2015 , 5, 105136-105148	3.7	19
2	Selective cleavage of the C(\(\mathbb{P}\)C(\(\mathbb{D}\)linkage in lignin model compounds via Baeyer-Villiger oxidation. Organic and Biomolecular Chemistry, 2015 , 13, 3243-54	3.9	61
1	Synthesis, Characterization, and Structure of Some New Substituted 5,6-Fused Ring Pyridazines. <i>Synthetic Communications</i> , 2011 , 41, 1357-1369	1.7	6