
Ming-Jiun Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7369025/publications.pdf Version: 2024-02-01

Μινις-Ιιτιν Υιι

#	Article	IF	CITATIONS
1	Sequential Phosphorylation of Hepatitis C Virus NS5A Protein Requires the ATP-Binding Domain of NS3 Helicase. Journal of Virology, 2022, 96, e0010722.	3.4	2
2	Glucocorticoid Receptor Maintains Vasopressin Responses in Kidney Collecting Duct Cells. Frontiers in Physiology, 2022, 13, .	2.8	3
3	α-Actinin 4 Links Vasopressin Short-Term and Long-Term Regulation of Aquaporin-2 in Kidney Collecting Duct Cells. Frontiers in Physiology, 2021, 12, 725172.	2.8	2
4	Sequential Phosphorylation of the Hepatitis C Virus NS5A Protein Depends on NS3-Mediated Autocleavage between NS3 and NS4A. Journal of Virology, 2020, 94, .	3.4	4
5	Intracellular location of aquaporin-2 serine 269 phosphorylation and dephosphorylation in kidney collecting duct cells. American Journal of Physiology - Renal Physiology, 2020, 319, F592-F602.	2.7	11
6	Rab7 involves Vps35 to mediate AQP2 sorting and apical trafficking in collecting duct cells. American Journal of Physiology - Renal Physiology, 2020, 318, F956-F970.	2.7	15
7	Glucocorticoid Receptor Maintains Vasopressinâ€Regulated Water Reabsorption Pathway in the Kidney Collecting Duct Cells. FASEB Journal, 2020, 34, 1-1.	0.5	1
8	Transcription Factor Elf3 Modulates Vasopressin-Induced Aquaporin-2 Gene Expression in Kidney Collecting Duct Cells. Frontiers in Physiology, 2019, 10, 1308.	2.8	13
9	Differential Proteomics Reveals Discrete Functions of Proteins Interacting with Hypo- versus Hyper-phosphorylated NS5A of the Hepatitis C Virus. Journal of Proteome Research, 2019, 18, 2813-2825.	3.7	6
10	Serine 229 Balances the Hepatitis C Virus Nonstructural Protein NS5A between Hypo- and Hyperphosphorylated States. Journal of Virology, 2019, 93, .	3.4	4
11	Small GTPase Rab7 Mediates Aquaporinâ€⊋ Recycling and Apical Trafficking. FASEB Journal, 2019, 33, 823.1.	0.5	0
12	Nonâ€Polarized mpkCCD Cell Model for Aquaporinâ€2 Phosphorylation and Membrane Trafficking Study. FASEB Journal, 2019, 33, 823.2.	0.5	0
13	Dexamethasone enhances vasopressin-induced aquaporin-2 gene expression in the mpkCCD cells. American Journal of Physiology - Renal Physiology, 2018, 314, F219-F229.	2.7	7
14	Aeginetia indica Decoction Inhibits Hepatitis C Virus Life Cycle. International Journal of Molecular Sciences, 2018, 19, 208.	4.1	11
15	Sequential S232/S235/S238 Phosphorylation of the Hepatitis C Virus Nonstructural Protein 5A. Journal of Virology, 2018, 92, .	3.4	11
16	αâ€actinin 4 Knockdown Reduced Vasopressinâ€Induced Aquaporinâ€2 Expression in the Kidney Collecting Duct Cells. FASEB Journal, 2018, 32, 621.3.	0.5	0
17	Serine 235 Is the Primary NS5A Hyperphosphorylation Site Responsible for Hepatitis C Virus Replication. Journal of Virology, 2017, 91, .	3.4	13
18	Vasopressin-induced serine 269 phosphorylation reduces Sipa1l1 (signal-induced) Tj ETQq0 0 0 rgBT /Overlock 10) Tf 50 67 3.4	Td (prolifera

2017, 292, 7984-7993.

Ming-Jiun Yu

#	Article	IF	CITATIONS
19	Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication. Journal of Biological Chemistry, 2016, 291, 3918-3931.	3.4	21
20	Phosphorylation of Serine 235 of the Hepatitis C Virus Non-Structural Protein NS5A by Multiple Kinases. PLoS ONE, 2016, 11, e0166763.	2.5	14
21	Brain Isoform Glycogen Phosphorylase as a Novel Hepatic Progenitor Cell Marker. PLoS ONE, 2015, 10, e0122528.	2.5	2
22	Vasopressin induces apical aquaporinâ€2 trafficking via mal2â€mediated transcytosis in renal collecting duct cells (LB840). FASEB Journal, 2014, 28, LB840.	0.5	0
23	Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17119-17124.	7.1	58
24	Gene expression databases for kidney epithelial cells. American Journal of Physiology - Renal Physiology, 2012, 302, F401-F407.	2.7	27
25	Aquaporinâ€2 regulation in health and disease. Veterinary Clinical Pathology, 2012, 41, 455-470.	0.7	51
26	Quantitative Proteomics Identifies Vasopressin-Responsive Nuclear Proteins in Collecting Duct Cells. Journal of the American Society of Nephrology: JASN, 2012, 23, 1008-1018.	6.1	50
27	Quantitative Protein and mRNA Profiling Shows Selective Post-Transcriptional Control of Protein Expression by Vasopressin in Kidney Cells. Molecular and Cellular Proteomics, 2011, 10, M110.004036.	3.8	51
28	Proteomic profiling of nuclei from native renal inner medullary collecting duct cells using LC-MS/MS. Physiological Genomics, 2010, 40, 167-183.	2.3	43
29	câ€Abl mediates high NaClâ€induced phosphorylation and activation of the transcription factor TonEBP/OREBP. FASEB Journal, 2010, 24, 4325-4335.	0.5	35
30	Quantitative analysis of aquaporin-2 phosphorylation. American Journal of Physiology - Renal Physiology, 2010, 298, F1018-F1023.	2.7	51
31	Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor–dependent signaling pathways in renal collecting duct cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3882-3887.	7.1	155
32	Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters. American Journal of Physiology - Renal Physiology, 2010, 299, F559-F567.	2.7	28
33	Systems-level analysis of cell-specific <i>AQP2</i> gene expression in renal collecting duct. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2441-2446.	7.1	117
34	Systems Level Analysis of Cellâ€5pecific AQP2 Gene Expression in Collecting Duct. FASEB Journal, 2009, 23, 998.1.	0.5	0
35	Proteomic Approaches for the Study of Cell Signaling in the Renal Collecting Duct. , 2008, 160, 172-185.		8
36	Vasopressin-stimulated Increase in Phosphorylation at Ser269 Potentiates Plasma Membrane Retention of Aquaporin-2. Journal of Biological Chemistry, 2008, 283, 24617-24627.	3.4	222

Мімс-Јіим Үи

#	Article	IF	CITATIONS
37	Akt and ERK1/2 pathways are components of the vasopressin signaling network in rat native IMCD. American Journal of Physiology - Renal Physiology, 2008, 295, F1030-F1043.	2.7	71
38	Large-scale quantitative LC-MS/MS analysis of detergent-resistant membrane proteins from rat renal collecting duct. American Journal of Physiology - Cell Physiology, 2008, 295, C661-C678.	4.6	45
39	Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct. American Journal of Physiology - Renal Physiology, 2008, 295, F192-F201.	2.7	29
40	LC-MS/MS analysis of differential centrifugation fractions from native inner medullary collecting duct of rat. American Journal of Physiology - Renal Physiology, 2008, 295, F1799-F1806.	2.7	33
41	Gap junctions in Malpighian tubules of <i>Aedes aegypti</i> . Journal of Experimental Biology, 2008, 211, 409-422.	1.7	39
42	Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3134-3139.	7.1	135
43	Vasopressin Activates Akt1 Through Plâ€3K in Rat Inner Medullary Collecting Duct (IMCD). FASEB Journal, 2008, 22, 935.7.	0.5	0
44	Production of an AQP2â€Enriched Clonal mpkCCD Cell Line. FASEB Journal, 2008, 22, 935.8.	0.5	0
45	NKCC1 Is Phosphorylated in Rat Inner Medullary Collecting Duct (IMCD). FASEB Journal, 2008, 22, 933.13.	0.5	Ο
46	Aminoaciduria and altered renal expression of luminal amino acid transporters in mice lacking novel gene collectrin. American Journal of Physiology - Renal Physiology, 2007, 292, F533-F544.	2.7	103
47	Dynamics of aquaporin-2 serine-261 phosphorylation in response to short-term vasopressin treatment in collecting duct. American Journal of Physiology - Renal Physiology, 2007, 292, F691-F700.	2.7	141
48	Tandem Mass Spectrometry in Physiology. Physiology, 2007, 22, 390-400.	3.1	23
49	Identification and Quantification of Basic and Acidic Proteins Using Solution-Based Two-Dimensional Protein Fractionation and Label-Free or18O-Labeling Mass Spectrometry. Journal of Proteome Research, 2007, 6, 2447-2459.	3.7	29
50	LCâ€MS/MS analysis of rat renal collecting duct membrane proteins affinityâ€purified with <i>Dolichos biflorus</i> agglutinin. FASEB Journal, 2007, 21, A477.	0.5	0
51	LC-MS/MS Analysis of Apical and Basolateral Plasma Membranes of Rat Renal Collecting Duct Cells. Molecular and Cellular Proteomics, 2006, 5, 2131-2145.	3.8	67
52	Large Scale Protein Identification in Intracellular Aquaporin-2 Vesicles from Renal Inner Medullary Collecting Duct. Molecular and Cellular Proteomics, 2005, 4, 1095-1106.	3.8	154
53	Mechanisms of K+ transport across basolateral membranes of principal cells in Malpighian tubules of the yellow fever mosquito, Aedes aegypti. Journal of Experimental Biology, 2004, 207, 1655-1663.	1.7	42
54	Effects of leucokinin-VIII on Aedes Malpighian tubule segments lacking stellate cells. Journal of Experimental Biology, 2004, 207, 519-526.	1.7	38

Ming-Jiun Yu

#	Article	IF	CITATIONS
55	The mechanism of action of the antidiuretic peptide Tenmo ADFa in Malpighian tubules of Aedes aegypti. Journal of Experimental Biology, 2004, 207, 2877-2888.	1.7	37
56	Leucokinin activates Ca ²⁺ -dependent signal pathway in principal cells of <i>Aedes aegypti</i> Malpighian tubules. American Journal of Physiology - Renal Physiology, 2002, 283, F499-F508.	2.7	44
57	Leucokinin and the modulation of the shunt pathway in Malpighian tubules. Journal of Insect Physiology, 2001, 47, 263-276.	2.0	40
58	Oscillations of voltage and resistance in Malpighian tubules of Aedes aegypti. Journal of Insect Physiology, 2000, 46, 321-333.	2.0	17
59	Cadmium-Inducible Metallothionein in Tilapia (Oreochromis mossambicus). Bulletin of Environmental Contamination and Toxicology, 1999, 62, 758-768.	2.7	36
60	Influence of Destruction of Retina-RPE Complex on the Proliferation of Scleral Chondrocytes in Chicks. Journal of Ocular Pharmacology and Therapeutics, 1998, 14, 429-436.	1.4	6