David J Loane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAnGLed astrocytes in traumatic brain injury: astrocytic 2-AG metabolism as a new therapeutic target. Brain, 2022, 145, 7-10.	3.7	1
2	Enhanced Akt/GSKâ€3β/CREB signaling mediates the antiâ€inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. Journal of Neurochemistry, 2021, 156, 225-248.	2.1	24
3	Pre-Clinical Common Data Elements for Traumatic Brain Injury Research: Progress and Use Cases. Journal of Neurotrauma, 2021, 38, 1399-1410.	1.7	22
4	Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. Journal of Neuroinflammation, 2021, 18, 24.	3.1	31
5	Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. Journal of Clinical Investigation, 2021, 131, .	3.9	86
6	Traumatic Brain Injury Induces cGAS Activation and Type I Interferon Signaling in Aged Mice. Frontiers in Immunology, 2021, 12, 710608.	2.2	33
7	Targeting chronic and evolving neuroinflammation following traumatic brain injury to improve long-term outcomes: insights from microglial-depletion models. Neural Regeneration Research, 2021, 16, 976.	1.6	3
8	The need to incorporate aged animals into the preclinical modeling of neurological conditions. Neuroscience and Biobehavioral Reviews, 2020, 109, 114-128.	2.9	33
9	Delayed microglial depletion after spinal cord injury reduces chronic inflammation and neurodegeneration in the brain and improves neurological recovery in male mice. Theranostics, 2020, 10, 11376-11403.	4.6	88
10	Early or Late Bacterial Lung Infection Increases Mortality After Traumatic Brain Injury in Male Mice and Chronically Impairs Monocyte Innate Immune Function. Critical Care Medicine, 2020, 48, e418-e428.	0.4	22
11	Longitudinal Assessment of Sensorimotor Function after Controlled Cortical Impact in Mice: Comparison of Beamwalk, Rotarod, and Automated Gait Analysis Tests. Journal of Neurotrauma, 2020, 37, 2709-2717.	1.7	6
12	Putative mGluR4 positive allosteric modulators activate Gi-independent anti-inflammatory mechanisms in microglia. Neurochemistry International, 2020, 138, 104770.	1.9	2
13	Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits. Journal of Neuroscience, 2020, 40, 2960-2974.	1.7	193
14	Interferon-β Plays a Detrimental Role in Experimental Traumatic Brain Injury by Enhancing Neuroinflammation That Drives Chronic Neurodegeneration. Journal of Neuroscience, 2020, 40, 2357-2370.	1.7	78
15	Old age increases microglial senescence, exacerbates secondary neuroinflammation, and worsens neurological outcomes after acute traumatic brain injury in mice. Neurobiology of Aging, 2019, 77, 194-206.	1.5	99
16	Primum non nocere: a call for balance when reporting on CTE. Lancet Neurology, The, 2019, 18, 231-233.	4.9	48
17	Inhibition of miR-155 Limits Neuroinflammation and Improves Functional Recovery After Experimental Traumatic Brain Injury in Mice. Neurotherapeutics, 2019, 16, 216-230.	2.1	57
18	Neutral Sphingomyelinase Inhibition Alleviates LPS-Induced Microglia Activation and Neuroinflammation after Experimental Traumatic Brain Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 338-352.	1.3	42

DAVID J LOANE

#	Article	IF	CITATIONS
19	Sex Differences in Acute Neuroinflammation after Experimental Traumatic Brain Injury Are Mediated by Infiltrating Myeloid Cells. Journal of Neurotrauma, 2019, 36, 1040-1053.	1.7	105
20	Acute drivers of neuroinflammation in traumatic brain injury. Neural Regeneration Research, 2019, 14, 1481.	1.6	59
21	Traumatic meningeal injury and repair mechanisms. Nature Immunology, 2018, 19, 431-432.	7.0	1
22	Chronic Alterations in Systemic Immune Function after Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1419-1436.	1.7	79
23	Inflammatory response of microglia to prions is controlled by sialylation of PrPSc. Scientific Reports, 2018, 8, 11326.	1.6	34
24	Colitisâ€Induced Neurobehavioral Deficits Following Chronic Brain Injury. FASEB Journal, 2018, 32, 921.8.	0.2	0
25	The far-reaching scope of neuroinflammation after traumatic brain injury. Nature Reviews Neurology, 2017, 13, 171-191.	4.9	687
26	Sexual dimorphism in the inflammatory response to traumatic brain injury. Glia, 2017, 65, 1423-1438.	2.5	230
27	Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 47.	3.1	228
28	Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain, Behavior, and Immunity, 2017, 66, 56-69.	2.0	109
29	NOX2 deficiency alters macrophage phenotype through an IL-10/STAT3 dependent mechanism: implications for traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 65.	3.1	65
30	CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation. Neurochemical Research, 2017, 42, 283-293.	1.6	24
31	Combination of Fluorescent in situ Hybridization (FISH) and Immunofluorescence Imaging for Detection of Cytokine Expression in Microglia/Macrophage Cells. Bio-protocol, 2017, 7, .	0.2	12
32	Endoplasmic Reticulum Stress and Disrupted Neurogenesis in the Brain Are Associated with Cognitive Impairment and Depressive-Like Behavior after Spinal Cord Injury. Journal of Neurotrauma, 2016, 33, 1919-1935.	1.7	94
33	NOX2 drives M1-like microglial/macrophage activation and neurodegeneration following experimental traumatic brain injury. Brain, Behavior, and Immunity, 2016, 58, 291-309.	2.0	152
34	Microglial/Macrophage Polarization Dynamics following Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 1732-1750.	1.7	248
35	Microglia in the TBI brain: The good, the bad, and the dysregulated. Experimental Neurology, 2016, 275, 316-327.	2.0	519
36	miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death and Differentiation, 2016, 23, 654-668.	5.0	67

DAVID J LOANE

#	Article	IF	CITATIONS
37	Progressive inflammationâ€mediated neurodegeneration after traumatic brain or spinal cord injury. British Journal of Pharmacology, 2016, 173, 681-691.	2.7	217
38	Neuroprotection for traumatic brain injury. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2015, 127, 343-366.	1.0	68
39	S100B Inhibition Reduces Behavioral and Pathologic Changes in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 2010-2020.	2.4	37
40	Chronic Neurodegeneration After Traumatic Brain Injury: Alzheimer Disease, Chronic Traumatic Encephalopathy, or Persistent Neuroinflammation?. Neurotherapeutics, 2015, 12, 143-150.	2.1	199
41	Downregulation of miR-23a and miR-27a following Experimental Traumatic Brain Injury Induces Neuronal Cell Death through Activation of Proapoptotic Bcl-2 Proteins. Journal of Neuroscience, 2014, 34, 10055-10071.	1.7	129
42	Novel mGluR5 Positive Allosteric Modulator Improves Functional Recovery, Attenuates Neurodegeneration, and Alters Microglial Polarization after Experimental Traumatic Brain Injury. Neurotherapeutics, 2014, 11, 857-869.	2.1	70
43	Progressive Neurodegeneration After Experimental Brain Trauma. Journal of Neuropathology and Experimental Neurology, 2014, 73, 14-29.	0.9	406
44	PARP-1 Inhibition Attenuates Neuronal Loss, Microglia Activation and Neurological Deficits after Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 758-772.	1.7	103
45	CR8, a Novel Inhibitor of CDK, Limits Microglial Activation, Astrocytosis, Neuronal Loss, and Neurologic Dysfunction after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 502-513.	2.4	56
46	Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiology of Disease, 2013, 54, 252-263.	2.1	127
47	Neuroprotective Effects of Geranylgeranylacetone in Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1897-1908.	2.4	39
48	Controlled Cortical Impact Results in an Extensive Loss of Dendritic Spines that Is Not Mediated by Injury-Induced Amyloid-Beta Accumulation. Journal of Neurotrauma, 2013, 30, 1966-1972.	1.7	80
49	Traumatic brain injury in aged animals increases lesion size and chronically alters microglial/macrophage classical and alternative activation states. Neurobiology of Aging, 2013, 34, 1397-1411.	1.5	213
50	Activation of mGluR5 and Inhibition of NADPH Oxidase Improves Functional Recovery after Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 403-412.	1.7	78
51	Selective CDK Inhibitor Limits Neuroinflammation and Progressive Neurodegeneration after Brain Trauma. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 137-149.	2.4	82
52	Comparing the Predictive Value of Multiple Cognitive, Affective, and Motor Tasks after Rodent Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 2475-2489.	1.7	91
53	Cyclin D1 Gene Ablation Confers Neuroprotection in Traumatic Brain Injury. Journal of Neurotrauma, 2012, 29, 813-827.	1.7	53
54	Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain, Behavior, and Immunity, 2012, 26, 1191-1201.	2.0	550

DAVID J LOANE

#	Article	IF	CITATIONS
55	Metabotropic glutamate receptorâ€mediated signaling in neuroglia. Environmental Sciences Europe, 2012, 1, 136-150.	2.6	36
56	CR8, a Selective and Potent CDK Inhibitor, Provides Neuroprotection in Experimental Traumatic Brain Injury. Neurotherapeutics, 2012, 9, 405-421.	2.1	49
57	Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiology of Disease, 2012, 46, 745-758.	2.1	52
58	Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. Journal of Neuroinflammation, 2012, 9, 43.	3.1	144
59	Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 225-236.	1.7	54
60	Role of Microglia in Neurotrauma. Neurotherapeutics, 2010, 7, 366-377.	2.1	541
61	Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends in Pharmacological Sciences, 2010, 31, 596-604.	4.0	485
62	Activation of Metabotropic Glutamate Receptor 5 Modulates Microglial Reactivity and Neurotoxicity by Inhibiting NADPH Oxidase. Journal of Biological Chemistry, 2009, 284, 15629-15639.	1.6	96
63	Activation of metabotropic glutamate receptor 5 improves recovery after spinal cord injury in rodents. Annals of Neurology, 2009, 66, 63-74.	2.8	71
64	Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia, 2009, 57, 550-560.	2.5	157
65	Metabotropic Glutamate Receptors as Targets for Multipotential Treatment of Neurological Disorders. Neurotherapeutics, 2009, 6, 94-107.	2.1	112
66	Amyloid precursor protein secretases as therapeutic targets for traumatic brain injury. Nature Medicine, 2009, 15, 377-379.	15.2	219
67	Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain. Neurobiology of Aging, 2009, 30, 920-931.	1.5	90
68	Co-assembly of N-type Ca2+ and BK channels underlies functional coupling in rat brain. Journal of Cell Science, 2007, 120, 985-995.	1.2	68
69	Eicosapentaenoic acid confers neuroprotection in the amyloid-β challenged aged hippocampus. Neurobiology of Aging, 2007, 28, 845-855.	1.5	135
70	Modulation of amyloid-Î ² -induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry, 2007, 103, 914-926.	2.1	90
71	Inhibition of BKCachannel activity by association with calcineurin in rat brain. European Journal of Neuroscience, 2006, 24, 433-441.	1.2	16