Ana Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7368879/publications.pdf Version: 2024-02-01

ΔΝΙΑ SΗ ΜΑ

#	Article	IF	CITATIONS
1	1,3-Dipolar Cycloaddition Reactions of Porphyrins with Azomethine Ylidesâ€. Journal of Organic Chemistry, 2005, 70, 2306-2314.	1.7	113
2	meso-Tetraarylporphyrins as dipolarophiles in 1,3-dipolar cycloaddition reactions. Chemical Communications, 1999, , 1767-1768.	2.2	84
3	Porphyrins in 1,3-dipolar cycloaddition reactions with sugar nitrones. Synthesis of glycoconjugated isoxazolidine-fused chlorins and bacteriochlorins. Tetrahedron Letters, 2002, 43, 603-605.	0.7	72
4	Synthesis of New β-Substitutedmeso-Tetraphenylporphyrins via 1,3-Dipolar Cycloaddition Reactions. 1. Journal of Organic Chemistry, 2002, 67, 726-732.	1.7	56
5	Porphyrins in 1,3-Dipolar Cycloaddition Reactions. Synthesis of New Porphyrinâ^'Chlorin and Porphyrinâ^'Tetraazachlorin Dyads. Journal of Organic Chemistry, 2006, 71, 8352-8356.	1.7	51
6	Divergent Adsorption-Dependent Luminescence of Amino-Functionalized Lanthanide Metal–Organic Frameworks for Highly Sensitive NO ₂ Sensors. Journal of Physical Chemistry Letters, 2020, 11, 3362-3368.	2.1	50
7	β,β′–Corrole dimers. Tetrahedron Letters, 2006, 47, 8171-8174.	0.7	49
8	[1,2,3]Triazolo[4,5-b]porphyrins: New Building Blocks for Porphyrinic Materials. Angewandte Chemie - International Edition, 2006, 45, 5487-5491.	7.2	49
9	A novel fluorescein-based dye containing a catechol chelating unit to sense iron(III). Dyes and Pigments, 2012, 93, 1447-1455.	2.0	49
10	Novel barrelene-fused chlorins by Diels–Alder reactions. Tetrahedron Letters, 2000, 41, 3065-3068.	0.7	43
11	Porphyrins in 1,3-Dipolar Cycloaddition Reactions: Synthesis of a Novel Pyrazoline-fused Chlorin and a Pyrazole-fused Porphyrin. Synlett, 2002, 2002, 1155-1157.	1.0	42
12	Porphyrins in Diels–Alder reactions. Improvements on the synthesis of barrelene-fused chlorins using microwave irradiation. Tetrahedron Letters, 2005, 46, 4723-4726.	0.7	40
13	A lanthanide MOF immobilized in PMMA transparent films as a selective fluorescence sensor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2020, 8, 3626-3630.	2.7	39
14	Novel Mn(III)chlorins as versatile catalysts for oxyfunctionalisation of hydrocarbons under homogeneous conditions. Journal of Molecular Catalysis A, 2005, 239, 138-143.	4.8	37
15	Ohmic heating as a new efficient process for organic synthesis in water. Green Chemistry, 2013, 15, 970.	4.6	37
16	Subppm Amine Detection via Absorption and Luminescence Turn-On Caused by Ligand Exchange in Metal Organic Frameworks. Analytical Chemistry, 2019, 91, 15853-15859.	3.2	37
17	Chemical Transformations of Mono―and Bis(butaâ€1,3â€dienâ€1â€yl)porphyrins: A New Synthetic Approach to Mono―and Dibenzoporphyrins. European Journal of Organic Chemistry, 2008, 2008, 704-712.	1.2	35
18	Luminescent MOF crystals embedded in PMMA/PDMS transparent films as effective NO ₂ gas sensors. Molecular Systems Design and Engineering, 2020, 5, 1048-1056.	1.7	34

Ana Silva

#	Article	IF	CITATIONS
19	An efficient eco-sustainable oxidative desulfurization process using μ-oxo-bridged Fe(III) complex of meso-tetrakis(pentafluorophenyl)porphyrin. Applied Catalysis A: General, 2014, 478, 267-274.	2.2	33
20	Photophysical properties of a photocytotoxic fluorinated chlorin conjugated to four β-cyclodextrins. Photochemical and Photobiological Sciences, 2008, 7, 834-843.	1.6	32
21	Rhodamine labeling of 3-hydroxy-4-pyridinone iron chelators is an important contribution to target Mycobacterium avium infection. Journal of Inorganic Biochemistry, 2013, 121, 156-166.	1.5	32
22	Microwaveâ€Assisted Synthesis and Spectroscopic Properties of 4′â€Substituted Rosamine Fluorophores and Naphthyl Analogues. European Journal of Organic Chemistry, 2012, 2012, 5810-5817.	1.2	31
23	Discrimination of fluorescence light-up effects induced by pH and metal ion chelation on a spirocyclic derivative of rhodamine B. Dalton Transactions, 2013, 42, 6110.	1.6	30
24	Efficient electron transfer in \hat{l}^2 -substituted porphyrin-C60 dyads connected through a p-phenylenevinylene dimer. Tetrahedron, 2008, 64, 11404-11408.	1.0	29
25	Investigation of the insulin-like properties of zinc(II) complexes of 3-hydroxy-4-pyridinones: Identification of a compound with glucose lowering effect in STZ-induced type I diabetic animals. Journal of Inorganic Biochemistry, 2011, 105, 1675-1682.	1.5	29
26	Mechanistic insights on the site selectivity in successive 1,3-dipolar cycloadditions to meso-tetraarylporphyrins. Tetrahedron, 2008, 64, 7937-7943.	1.0	28
27	Synthesis of new tetrapyrrolic derivatives—porphyrins as dienophiles or dipolarophiles. Journal of Porphyrins and Phthalocyanines, 2000, 04, 532-537.	0.4	27
28	Ohmic Heating-Assisted Synthesis of 3-Arylquinolin-4(1 <i>H</i>)-ones by a Reusable and Ligand-Free Suzuki–Miyaura Reaction in Water. Journal of Organic Chemistry, 2015, 80, 6649-6659.	1.7	26
29	A novel approach to the synthesis of mono- and dipyrroloporphyrins. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 2752-2753.	1.3	25
30	Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2,4-Dinitrotoluene Sensing. Materials, 2017, 10, 992.	1.3	25
31	NMR characterisation of five isomeric β,β′-diformyl-meso-tetraphenylporphyrins. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1774-1777.	1.3	24
32	Microwave-assisted synthesis of 3-hydroxy-4-pyridinone/naphthalene conjugates. Structural characterization and selection of a fluorescent ion sensor. Tetrahedron, 2010, 66, 8544-8550.	1.0	23
33	Isoxazolidine-fused meso-tetraarylchlorins as key tools for the synthesis of mono- and bis-annulated chlorins. Organic and Biomolecular Chemistry, 2015, 13, 7131-7135.	1.5	23
34	A novel chlorin derivative of Meso-tris(pentafluorophenyl)-4-pyridylporphyrin: synthesis, photophysics and photochemical properties. Journal of the Brazilian Chemical Society, 2004, 15, 923-930.	0.6	22
35	Diels–Alder Reactions of 2′-Hydroxychalcones withortho-Benzoquino-dimethane: A New Synthesis of 3-Aryl-2-naphthyl 2-Hydroxyphenyl Ketones. European Journal of Organic Chemistry, 2006, 2006, 2558-2569.	1.2	20
36	Antibacterial activity of naphthyl derived bis-(3-hydroxy-4-pyridinonate) copper(II) complexes against multidrug-resistant bacteria. Journal of Inorganic Biochemistry, 2019, 197, 110704.	1.5	20

ANA SILVA

#	Article	IF	CITATIONS
37	New Syntheses of Flavones from Diels–Alder Reactions of 2-Styrylchromones withortho-Benzoquinodimethanes. European Journal of Organic Chemistry, 1999, 1999, 135-139.	1.2	19
38	Porphyrin derivatives: Synthesis and potential applications. Journal of Heterocyclic Chemistry, 2000, 37, 527-534.	1.4	19
39	Synthesis of (E)-2-Styrylchromones and Flavones by Base-Catalyzed Cyclodehydration of the Appropriate β-Diketones Using Water as Solvent. Molecules, 2015, 20, 11418-11431.	1.7	18
40	Cycloreversion and other gas-phase reactions of neutral and cationic pyrrolidine-fused chlorins and isobacteriochlorins under ion bombardment and electrospray. Rapid Communications in Mass Spectrometry, 2004, 18, 2601-2611.	0.7	17
41	Novel tetradentate chelators derived from 3-hydroxy-4-pyridinone units: synthesis, characterization and aqueous solution properties. Tetrahedron, 2011, 67, 4009-4016.	1.0	16
42	Design of a water soluble 1,8-naphthalimide/3-hydroxy-4-pyridinone conjugate: Investigation of its spectroscopic properties at variable pH and in the presence of Fe3+, Cu2+ and Zn2+. Dyes and Pigments, 2013, 98, 201-211.	2.0	16
43	Synthesis and coordination studies of 5-(4′-carboxyphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin and its pyrrolidine-fused chlorin derivative. New Journal of Chemistry, 2018, 42, 8169-8179.	1.4	14
44	β-Functionalized zinc(II)aminoporphyrins by direct catalytic hydrogenation. Tetrahedron Letters, 2013, 54, 110-113.	0.7	13
45	Tuning the limits of pH interference of a rhodamine ion sensor by introducing catechol and 3-hydroxy-4-pyridinone chelating units. Dyes and Pigments, 2014, 110, 193-202.	2.0	13
46	1,3-Dipolar cycloadditions with meso-tetraarylchlorins – site selectivity and mixed bisadducts. Organic Chemistry Frontiers, 2017, 4, 534-544.	2.3	13
47	Reversible Protonation of Porphyrinic Metalâ€Organic Frameworks Embedded in Nanoporous Polydimethylsiloxane for Colorimetric Sensing. Advanced Materials Interfaces, 2021, 8, 2001759.	1.9	13
48	Use of a porphyrin platform and 3,4-HPO chelating units to synthesize ligands with N4 and O4 coordination sites. Tetrahedron, 2011, 67, 7821-7828.	1.0	12
49	New hydrophilic 3-hydroxy-4-pyridinone chelators with ether-derived substituents: Synthesis and evaluation of analytical performance in the determination of iron in waters. Polyhedron, 2019, 160, 145-156.	1.0	11
50	Synthesis, characterization, and cellular investigations of porphyrin– and chlorin–indomethacin conjugates for photodynamic therapy of cancer. Organic and Biomolecular Chemistry, 2021, 19, 6501-6512.	1.5	11
51	Preparation and Optimization of Fluorescent Thin Films of Rosamine-SiO2/TiO2 Composites for NO2 Sensing. Materials, 2017, 10, 124.	1.3	10
52	Synthesis of Pyridyl and <i>N</i> â€Methylpyridinium Analogues of Rosamines: Relevance of Solvent and Charge on Their Photophysical Properties. Chemistry - A European Journal, 2019, 25, 15073-15082.	1.7	9
53	The Influence of the Amide Linkage in the Fe ^{III} â€Binding Properties of Catecholâ€Modified Rosamine Derivatives. Chemistry - A European Journal, 2015, 21, 15692-15704.	1.7	8
54	New fluorescent rosamine chelator showing promising antibacterial activity against Gram-positive bacteria. Bioorganic Chemistry, 2018, 79, 341-349.	2.0	8

Ana Silva

#	Article	IF	CITATIONS
55	Synthesis and spectroscopic characterization of a new tripodal hexadentate iron chelator incorporating catechol units. Polyhedron, 2015, 87, 1-7.	1.0	6
56	Microwave-Enhanced Synthesis of Novel Pyridinone-Fused Porphyrins. Synlett, 2009, 2009, 1009-1013.	1.0	5
57	Reactivity of tetrapyrrolyl nitrones towards dipolarophiles bearing electron-withdrawing groups. Tetrahedron Letters, 2015, 56, 2878-2881.	0.7	5
58	Synthesis of Catechol Derived Rosamine Dyes and Their Reactivity toward Biogenic Amines. Molecules, 2021, 26, 5082.	1.7	4
59	Novel Diels-Alder and Thermal [4+4] Cycloadditions of Corroles. Synlett, 2004, 2004, 1291-1293.	1.0	3
60	Characterization of a <i>μ</i> â€oxoâ€bridged diiron porphyrin by ESlâ€LTQâ€Orbitrapâ€MS. Journal of Mass Spectrometry, 2014, 49, 763-765.	0.7	3
61	Design of a Water Soluble Fluorescent 3-Hydroxy-4-Pyridinone Ligand Active at Physiological pH Values. Journal of Fluorescence, 2016, 26, 1773-1785.	1.3	3
62	Synthesis and characterization of two fluorescent isophthalate rosamines: From solution to immobilization in solid substrates. Dyes and Pigments, 2018, 157, 405-414.	2.0	3
63	CHLOROSULFONATION OF FLAVONES. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 140, 113-124.	0.8	2
64	Porphyrins in 1,3-Dipolar Cycloadditions with Sugar Azomethine Ylides. Synthesis of Pyrrolidinoporphyrin Glycoconjugates. Synlett, 2005, 2005, 0857-0859.	1.0	2
65	Fluorescent Rosamine/TiO2 Composite Films for the Optical Detection of NO2. Journal of Sensors, 2018, 2018, 1-7.	0.6	2
66	From Discrete Complexes to Metal–Organic Layered Materials: Remarkable Hydrogen Bonding Frameworks. Molecules, 2020, 25, 1353.	1.7	2
67	Multidimensional Ln-Aminophthalate Photoluminescent Coordination Polymers. Materials, 2021, 14, 1786.	1.3	1
68	Ohmic heating-assisted synthesis and characterization of Zn(<scp>ii</scp>), Cu(<scp>ii</scp>) and Pd(<scp>ii</scp>) complexes of heterocyclic-fused chlorins. Dalton Transactions, 2022, 51, 3520-3530.	1.6	1
69	(Aminophenyl)porphyrins as precursors for the synthesis of porphyrin-modified siloxanes. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1001-1012.	0.4	0
70	Functionalization of Rhodamine Platforms with 3-Hydroxy-4-pyridinone Chelating Units and Its Fluorescence Behavior towards Fe(III). Molecules, 2022, 27, 1567.	1.7	0